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| _Introduction and outline of results.

This report pursues two goals. These are

(1) A comparison of currently used methods in computationa! physical

geodesy. This was the primary desire of the contractor.

(2) A feasibility study on the use of the finite element method for the
numer ical solution of the fundamental problem of physical geodesy. This

was the primary desire of the author.

The fundamental problem of physical geodesy is the simultaneous
determination of the earth’s figure and potential from geometric and
gravimetric measurements. The numerical solution requires a finite
parameter ization of the potential and - in case of a sophisticated
approach - also of the earth’s figure.

A comparison of various methods for the detailed representation of
the earth’s gravity fieid has recently been given by Tscherning (1879).
His confirmed impression is that there is ¢ number of competing methods
performing about equally well as far as the quality of results is
concerned.

In chopter 2 of the present report various methods currently used
to approach the problem of the determination of the earths figure and

potential were examined from the viewpoint of computational efficiency.

Methods |ike collocation, surface layer, buried masspoints, Bjerhammar’s
method, lead to o fully occupied linear system of equations to be
solved. The effort to solve such o system is proportional to N>, where N
is the number of equctions. Breackdown due to OSU-CPU times exceeding 109
hours occurs at about N = 18,8008 (this corresponds to a surface layer
solution with 2°x2° blocks neor the equator)

If the pattern of data and weights shows rotational symmetry,

great savings in computation time con be obtained by using techniques
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based on discrete Fourier transform of block circulant matrices. This
has been shown by Colombo (1383). The ocuthor feeis that Colombo’s
approach is currently the best one 1f an essentially nonredundant set cf
surface data is employed. Such a set is for exampie given by 1°x1° block
averages of gravity aromalies. Although the quality of such block
averages varies greatly between areas, the assumption of equal weights
will not couse toco much harm to the estimated parameters, because there
is no problem of adjusting redundant data. The system must toke what it
gets and has no choice to balance poor anomalies against better
observations. Of course, the accuracy estimates obtained from such a
procedure are very problematic.

Similar things may be said about GEQOFAST developed by TASC The
asymptotic speed is even proportional to N log N. The gain in speed is
paid for by restricting applications to data distributed regulorly on a
line or within a rather small plane rectangle. Some possible trouble
spots are indicated in chopter 2. One of them is concerned with
trensporting a covariance from the sphere to the plane. Harmonicity gets
fost thereby. It would also be interesting to have some idea on the
proportionality facter in front of the N log N term estimcting the CPU
time.

Chapters 3 to 6 document a feasibility study on the use of the
finite element method in physical geodesy. This method leads to a sparse
set of equotions whose solution requires an effort proportional to N%,
where N has the same meaning as above. Unfortunately the constant of
proportionality is large. The break even point between the surfaoce layer
and finite elements in a global solution is estimoted to be around 2°x2°
blocks. For smaiier blocks finite elements are faster; for lorger ones
the surface layer is faster. The effort for o global solution based on
1°x!° gravity onomaly daota is estimated ot 700 QSU CPU hours. A special
technique exploiting the remote zone effect could reduce this to about
258 hours (the surface layer method would require 15,008 hours). An

effort of 250 OSU CPU hours is considered too lorge. Severol reruns

s it




would be necessary before a satisfactory choice of weights is found

Although there exist computers, as for exampie the ILLIAC IV, on which
the CPU time could be cut by a factor of about 84, the problem appears
too large for one individual researcher or a smal!l research group.

Fortunately, the remote zone effect allows to compute local
solut:ions. The report will give an estimate for the cclculation of a
detailed potential in an equatorial strip (6.5 hours) and in «a
rectangular arec of size 32°464° (covering e.g. the contiguous US). In
the ictter caose 39'x32’ data were assumed. CPU time was estimated ot 20
0SU hours. By a sophisticated use of the remote zone effect this con
probably be lowered to 6 hours. This compores favorably with o surface
layer solution requiring about 70 hours.

The finite element method does not rely on any regular pattern of
observation and weights. (Regularity could be exploited in the same way
as with the other methods. The additional saving in CPU time would,
however, not be dramatic.) In areas where the field shows much detail,
smalier elements may be chosen. Redundant data, as for example gravity
anoma!ies plus geoid heights, pose no problem. The method offers also
disadvantages. Harmonicity of the calculated field is only aoproximate.
The programming effort for an efficient computer implementation is
considerable.

The finite element method loses much of its efficiency if the data

are not locai. Local data are composed of measurements tcken in a way
that one meosurement involves only a single point or a small vicinity of
a point. A vicinity of a point is considered small if it contains only a
small number of the finite elements in its interior. A more precise

definition of the locality of a measurement would be that its .#

contribution to the normal equaltions must not desiroy the sporsity

pattern resulting from o field representation by means of finite ]

e

elements. Cota obtained by integrating over on unknown orbit are not

locai. Neither are misclosures of large inertial navigation 'oops There




are, however, woys to incorporate orbits at higher oltitudes in an
efficient way i
The finite element method lends itself to Helmert blocking, or its i
modern veriant, nested dissection. Calcuiations for subregions (nations,
cont inents) could be deiegated. Junction equations couid be combined at
a higher level, very much in the same way as this is dome in continental
network adjustment.
Chaopter € documents a number of test calculations They were

carried out with the following gocis.

(1) To see whether the Ritz-, or the Trefftz—, or the ola fashioned

least scuores principle should be used (The latter is recommended for

the specific needs of physical geodesy).

(2) To see whether the use of cubic polynomicis is sufficient, or
whether quintic or even higher degree polynomials are needed (Cubics

are sufficient, quintics cre already hopeless from the CPU time point of

view) .

(3) To see whether a certain type of element portition making o best
possible use of the "attenuation with altitude effect” con be emoloyed.

(The outcome was satisfactory).

(4) To find an appropriate representation of the field in the remote
outer space of the earth (Specially designed elements of infinite size
and appropriately chosen shape functions performed wei! in this

respect). ]

(5> To get an idea how the observational weights should be balanced
against the weights apoiied to the equations enforcing the approximate

fulfillment of Labplaoce’s equation. (Recsonable weights were found by

experiment More insignt wouid be cesirabie)
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(6) To see whether a combination solution of surfoce gravity values and
sateliite derived hormonics is possible. (The answer is yes, but
additional tests are necessary to identify procedures preventing a

substontial increase in CPU time).

The exper iments were carried out in 2 dimensions in order to save CPU
time. Smal! scale 3~-dimensional calculations are desircbie, but there
was no time yet to perform them.

In the authors opinion the finite element method has a place in
physical geodesy. It is very likely that a proposal by Junkins (19793)
will be accepted, suggesting to use a finite element representation of gq
completely known potential for the purpose of rapid recalculation in
real time opplication and also otherwise. The authors feeling is that
finite elements are also useful to parameterise an unknown potential
during an estimction procedure. However, the method must be cultivated
somewhat more before a large scale effort is attempted. At the end of
the research period covered by this report, the author began to look
into a hybrid method which combines finite elements with a surface layer
of multipoles. Some preliminary stotements on this envisioned method ore
given in chapter 7. Another feature which makes finite elements
aottractive is the possibility to attack in a head-on way the free
boundory value problems of physical geodesy. Some ideas how this could

be accomplished cre found in chapter S.




2. Review of verious methods

Consider an earth-centered and earth-~fixed coordincte system. Choose a
convenient reference potential, e.g. that ome of an equipotential
ellipsoid, or one obtaimed from a truncated spherical harmonics
expension. The normal potential is assumed to compietely obsorb the
rotational effect. Hence the disturbing potential V is purely

gravitational. In outer space it satisfies Laplace’s equation
AV =0 2.1

Loplace’s equation represents o local law. In order to evaiuate the
second order differential operator at o certain location x, we need only
information on V in a loca! neighborhood of x.

The purpose of physical geodesy is the determination of the ecrths
surface ond potentiai from geodetic measurements. There is hardly a need
to point out that the megsurements are indirect, ond that it is
therefore necessary to represent surfoce and potential in terms of a
number of unknown parameters. Because computers perform only finitely
many operations in a finite amount of time, the number of porameters
must be finite.

The choice of an appropricte set of parameters is highly

nontrivial. Factors to be taken into account are:

(%) Type of application, e.g., local improvements or global

corrections to the field.

(%) Type ond distribution of mecsurements, in particular,

homogeneous or heterogeneous sets of data.

(#) Mathematical simplicity and elegancy. Simple setups are
easier to program. Debugging the prograoms is less time

consuming.
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(%) Computer time during production runs.

Let us restrict ottention to the potential, forgetting temporarily the
parameters describing the unknown reference surface. Let us review ond
discuss representations of the potential that have been used by
geodesists. Our main emphasis will be on the last item listed above,

i.e. computational efficiency during production runs.

2.1 . Spherical harmonics.

They satisfy Laploce’s equation automatically. The trace functions with
respect to the unit sphere are the surface spherical hormonics. They ore
the eigenfunctions of any rotation invariant operator on the sphere.
Confer Mueller (1966), Meiss| (1971a), Robertson (1978), Freeden (1973)
for extensive discussions. Spherical harmonics provide great theoretical
insight. They lead to the concept of the power spectrum of the
potential. If a problem can be formulated in a way that rotation
symmetry is preserved, then spherical harmonics ore also of great
computational advantage. In this context recent papers by
Freeden (1878), (1979) ore pointed out where methods for numerical
integration of functions defined on the sphere cre specified. The
formulas are reloted to the fomiliar Gaussion quadrature formulas for
intervals, i.e. they rely on a weighted average of function values at a
set of discrete points. It is likely that the formulas can be extended
to functions discretized in terms of block overages.

Spherical harmonics are widely used in satellite geodesy. At
satellite altitudes of 1008 km aond above, the potential is sufficiently
attenuated to be properly represented by a spherical harmonics expansion

of moderately large degree (N = 20-30, or so).
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et us now assume that we are dealing with a problem inveiving a
heterogeneous set of data, suggesting ¢ !east squecres setup by voriaction
of parameters. Then one particular property of sphericai hormonics
counterccts comoutationai efficiency. This oroperty of spherical
harmonics is that they cre nonzero aimost everywhere No funclion
different from the zero function can satisfy Lapiace’s equaltion and, at
the same time, vanisn in a part of the domain having nonzero measure.
Thus spherical harmonics fail to nave a local support. If the disturbing

potential is represented in terms of spherical harmonics as

N ¢+l
V(X) 2 Z Z CLjHLj(x) 2.2
L:O J‘:-L
aond if a local measurement leads to a linear functional L(V) involving
only points in a small vicinity of x, then we nevertheless get a

representation

L(v) = 2. 2 ey LCHy) 23

110 j:-L

where most, if not ail, of the coefficients cij are nonzero. Due to the
failure of the ij to have local support, any local measurement wil!
introduce an observation eguation into the adjustment which has many
nonzero coefficients. The nmormal equations wil! be practically full.
Solving o symmetric full system of m equations (without complete

inversion) requires about
m>
= 2.4

elementory steps, one step comprising one muitipfication followed by one
addition. Confer equation (A.8) of Appendix A. Assuming that a computer
can perform cbout 580,329 such steps in o second of time, we arrive at
the following table, listing CPU times in dependence of various choicas

for m.




-g-
r m CPU time
100 0.3 seconds
1009 5.6 minutes
10000 93.8 hours
100000 16.8 years |

Table 2.1. CPU times for

solution of full m*m systems
m = 10000 corresponds to about N = 108 in the above expansion for V(x).
The actual time required to solve very big systems will be larger than
the CPU time due to dota transfer between central and peripheral memory.

Tt may be a coincidence that present day computers limit the

spherical harmonics expansion to about N = 109. It also appears that the
physical significance of sperical harmonics coefficients of degree
higher than 100 is questionable. A local anomaly of the field will have
a spericdl harmonics expansion with c;; tapering off to zero more
reluctantly the more pronounced the anomaly is, i.e., the less smooth it
is. Hence a local cnomaly is decomposed into components being nonlocal.
This may be desirable in such fields as optics or acoustics. In physical

geodesy it is undesiroble.

2.2. Surface layer representation and reloted methods.

Under sufficiently general conditions the outer potential can be
represented by o surfoce loyer. A surface layer can be specified in
terms of finitely many porameters in various ways, such as for example
by constant values of density in subregions composing the entire surface
of the eorth. Confer Koch and Witte (1871), Morrison (1988). Any of the

surface elements generates a potential, i.e., a solution of Laplace’s
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equation in cuier space. The total potential i1s obtained by
superposttion. In this respect, the presently discussed method does not
deviate from spnerical harmonics. Also the property of a computationally
rather undesirabie nonlocal support carries over. Hence the above tcbie
continues to give an indication of the computational effort involved, if
m is token as the number of surfoce elements. Indeed, global solutions
exceeding m = 2823, which corresponds to obout 5 by 5 degree elements
near the equator, have not been reported in the literature (Confer,
however, subsection 2.7 beiow dealing with shortcuts resulting from
symmetrical configurations).

The physical significance of the surface layer is not immedicte.
However they definitely offer the advantage of modelling local effects.
In creas, where the field is very detailed, or, where o more detailed
knowledge of the field is desired, smailer sized elements may be chosen.

Similar statements can be made about buried masspoints (confer
e.g Needham (1878) or Hardy and Goepfert ({875)) and cbout Bjerhammar’s
method The latter represents the potential by its boundery values on a
sphere entirely contained in the interior of the earth. A finite
parameterization is achieved e.g. by partitioning the surface of the
sphere into smail elements, ond by assuming constont boundary ve'ues in
these elements. Confer Bjerhammar (1978), Sjoeberg (1978).

The normal eguation system will be full, i e. the above table
app.ies. Local effects may be conveniently modelled by vary:ng the

element size.

2.3 Least squares collocation.

2.3.1. Krarup’s proposal .

Although least squares collocation shares some features with the methods

ment ioned under 2.2, there are some important deviations. Again, the
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potential is represented as o linear superposition of special solutions

to Laplace’s equation:
Vix)s 2 ¢ LiKOow) 2.5)
=

The number of terms, however, now equals n, the number of meosurements.

The functions
Fix) = LKy 2.6

are derived from a symmetric and positive definite kernel Kix,y) which
satisfies Laplace’s equation with respect to x. (Due to symmetry, it
also satisfies Loplace’s equation with respect to y). If the i-th

measurement |, refers to o functional
Loz LLVOn) ; x= > @1

then F; (x) as given by equation (2.6) is taken as the i-th basis

function.

The function K(x,y) is viewed as a reproducing kerne!. Thus it

defines a norm [[Vll. The c; ore chosen such that

L, (V(x)) = (; (2.8

‘and that

IVOOL = Min. 2.9

Confer Krarup (1968). The textbook by Moritz (1880) maoy be consulted for
o detailed documentation, discussion, presentation of extensions, and
for its bibliography.

It is seen that least squares collocation uses as mony basis
functions as there are observations. As compaored to 2.1 and 2.2 this

number n will frequently be larger than m, the number of unknowns in the

other methods. Hence we con expect o very good fit. However, a price has
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to be paid for this The size of the linear system to be solved is n by
n The system is fuil feor tre very same reasons as given ecriier: the

F.(x)'s satisty Laplcce’s equation. Hence the computciionai effort is

o’ 2.1
6
The mathematical elegancy of ieast sauares collocation is undisputed.
The method easily takes any type of heterogeneous data. The choice of a
suitable covariance function is not immedicte and requires insight.
Confer Tscherning and Rapp (1874).
A computer implementation of the collocation method is described

in Tscherning (1978).

2.3 2. Least squares collocation using urknouwn paraometers.

A somewhat unsatisfactory aspect of pure least squares collocation is
the foliowing one. In arecs of insufficient data the predicted function
tends to opproach the zero function. Since the problem of physical
geodesy resuits from a |inearization procedure based on the use of a
reference surfoce, the consequence is that in oreaos of insufficient dota
the reference surface is predicted. The reference surfaoce is, however,
mos* |y chosen according to computational convenience rather than
according to 1ts approximation of the physical truth.

This unsatisfactory aspect can be counteracted by using a setup
including unkrown parameters. Confer Moritz (1980), section 16. This

satup is closeiy related to the concept of generalized splines which

will be discussed forther below.
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2.4 Finite elements.

Finite elements have been very successful in other disciplines. There
exists on abundance of literature. As textbooks we mention

Zienkiewicz (1971), Schworz (1988), Ciarlet (1978), Strang-Fix (1973)
Finite elements have also been used by some geodesists. Cf.

Szameitat (1979), Werner (1979). Bosman-Eckhort-Kubik were early
geodetic users of finite element concepts. They applied piecewise
polyrnomials to surface approximation problems. The use of finite
alements in Physical Geodesy (in the narrow sense) was up to now
restricted to the representation of a known potential for ropid
recalculation. Confer Junkins (1877), (1979), Engels (1973). We intend

to use the method also during the determination of the potential

together with the earth’s surface. Our intended use will be described in
detail in the subsequent chapters. In this section we shall be very
brief.

The domain of interest is subdivided into finitely many
subregions, called elements, of preferably simple shape. If the region
is unbounded, some of the elements must be of infinite size. We shall
mostly work with box-type elements partitioning the r, ¢, A parameter
space resulting from a choice of polar coordinates. At the boundary of
any element a number of nodes is located. Any node is shared by two or
more elements. In our case nodes will be mostly ot the corners of the
boxes; but occasionally some are also encountered elsewhere on the
foces.

To ony node a number of parameters is associated. Usually they
include the value of the potential there ond of some of its derivatives,
An interpolation formula is prescribed which allows to calculate the
potential ond its derivatives at any point in the interior or on the
boundary of an element from the porameter values of all nodes associated

with this element. The interpolating function is analytic ond of simple

———

e ——————




SR

— w70

- 14 -

shape in the interior of the elements. Acrcoss element boundaries
continuity of the function is usually required. Depending on the type of
application, continuity of some derivatives is also needed. We propose
the use of tricubic polynomials in the elements such that the resuiting
potential is globally ¢! continuous (it is continuous together with its
first order derivatives).

If on observation of the potential refers to a location within an
element, the resulting observation equation will involve only parcmeters
of nodes associated with this eiement. As a consequence, the system of
observation equations wil! be sparse and so will be the normal equations
formed from them. This is a great computational advantage. The normal
equat ions resulting from the observation equations ore not yet
sufficient. A potential represented by finite elements is not
automatically harmonic. Harmonicity must be enforced by cnother set of
normal equations which must be added to the earlier ones. We shall call
this the contribution of the field to the normol equations. It is
obtained by minimizing the integral over the square of the Laplacean of
the field. Harmonicity is not fully ensured this way, but only
approximately. The sparse structure of the normal equations is not
impaired by the field contribution. Sparseness is the great benefit of
the finite element method. If N is the total number of parameters in our

application of the method, the computational effort wili be
const N% 2.1

As we shal!l see, the total number of parameters is appreciably larger
than the number of blocks in a comparable surface layer solution.
However it is important to stress that o synchronized refinement of the
partition in the two methods will keep the ratio of the number of blocks

to the number of parameters approximately constont. Hence our method is

3
const. *N? as compared to consts*N3 in the surface layer solution. On the
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other hand const. > constg. As a consequence, for a small number of
blocks the surface layer solution will be more economical. For large N,
the finite element solution is better. The breck even point is estimated

to be around 2°x2° blocks.

Remark: A computational effort of 0IND) steps results if the "nested
dissection method" due to George (1973), (1977) is applied to a sparse

‘ system of N equations resulling from decomposing a two dimensiona!
region of size 0ONIXOCIND into N elements. The system represents the
equilibrium equation for o 2-dimensional elastic problem defined over
this region. Although our region is 3-dimensional, the estimate of OCN%)
steps remains valid due to the opportunity to use increasingly lecrger

elements as the altitude increases.

Remark: it must be emphasized that the efficiency of the finite element
method relies heavily on the Jocality of the meosuremeni functionals.
Any measurement must involve only one point or o set of points cont ined
to a small region. Measurements involving points along an unknown
trajectory, such as for example misclosures of large inertial navigation
loops, are excluded. They would destroy the sparsity pctitern and degrade

the asymptotic computational efficiency to that of leost squores

———

collocation. Also unknown orbits of sate!lites pose difficulties. If the
i orbits are high enough, one may, however compromize by fusing finite

. elements near the earths surface with e.g. spherical harmonics at higher
altitudes. The elements are chosen small near the earths surface. They
get larger and laorger with altitude in agreement with the potentiais

attenuation. At satellite altitude there is only one element, or a smail

number of them.

A TOLTE v I
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2.5 Spline furctions.

Theory and application of spiine functions are very diversified. There
s an overlap with least squares collocation and o border line with
finite elements. Spline functions were invented by I. J. Schoenberg and
first described in his famous paper Schoenberg (1846). Since then they
have evolved into a very popular tool of applied mathematicians as well
as into an object of interest to theoreticians, who implanted them into
Hilbert spaces. Textbooks have been published, as for example Ahiberg
et. al. (1967), Boehmer (1874).

The precticaily minded person associates with splines a special
subset of them, nameiy polynomial spiines. There is o widespread
preference for cubic splines. Polynomial spiines perform well in
interpoiation problems due to their simplicity, computational efficiency
smoothness and locality. As already pointed out by Schoenberg (1948),
one can construct basis functions having a local support.

The use of spline functions for problems of physical geodesy was
suggested by Davis aond Kontis (1378). Meiss! (187!b) proposed their use
for the represeniation of pointwise known functions during Lhe evaliu-
ation of the explicit integral formulas of physical geodesy, i.e. the
formulas by Stokes, Vening Meinesz and their refinements due to Moio-
densky. This proposal was worked out by Suenkel (1977) and Noe (1888) .

From the point of view of Hilbert space theory spline functions
are optimal interpolators (or approximators) of functiormals. Optimality
relies on two complementary criteria, namely the minimum norm property
and the best approximation property. Both criteric are based on the
choice of a seminorm. This choice is up to the user. In contrast to
generai leost squeres collocation, certain natural curvature-seminorms
strongly suggest themselves as candidates.

Theory ond geodetic use of splines are discussed in detail in
Moritz (1978), Lelgemann (1988) ond in o forthcoming paper by

Freeden (1881) Collocation with the use of poraometers can be inbedded
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into the Hiibert soace theory of splines as out!lined :n Boehmer (1374),
chapter 4.

We shall briefly stress the point of view of computctionai
efficiency. If ore uses generalized spl!ines, as proposed by
Lelgemann (1980), Freeden (1981), one deals with functions lacking a
local support. Hence the normal equations are ful' This limits the size
of the systems to a few thousand unknowns. On the other hand cubic
splines can be genmeralized to 2 ond 3 dimens:ons by means of tensor
products. Here basis functions with local support are available Thus
the spline method competes with the finite element method in
computationa! efficiency. Therefore we shall discuss this perticuler
point in some detail.

Imagine, for simplicity, a rectangular region in 3-dimensional
space subdivided into box-type elements of eaqual size and shope. The set
of nodes shall be identical with the set of corners of the element. Our
intended use of the finite element method relies on interpoluting
functions called Hermite tri-cubics. In any of the various boxes, the
function to be interpolcted is represented by a polynomial which is a
cubic in any one of the 3 veriables, provided thaot the other two
variables are fixed. (Considered as a poiynomial in 3 variables the
interpolating function is of degree 9). We associate with any node 8

parameters representing

98:‘._ j;, S:K VirgA) . 0¢< t,j.Kg1 Q12
at this node. These are the derivatives of the potential of "bidegree”
less than or equal to |. By letting al! porameters having the value zero
except for one, we obtain as interpolating functions a besis function
associated with this particular node and this particular porometer. This
basis function is called shape function. This wil! be discussed in
detail in section 3.2. Here we only emphasize that we have 8 basis

functions per node. Any basis function is C* continuous and has a !ocal
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support , mited Lo 8 aa'acent eiements

T ae Qlternsiiveny represent our Tre o by means of basis

funct ons Su- t up of tr -cubic spilines. we obta:n oniy ! basis function
“or each neoae .t :s tre tensor product 3(x,y,z) = 300OByIB(2) of

one-1 mersionrc. B-sp! . nes 3(x) specifiad 'n Schoenberg (1848, p. 71,

- '
1
1

‘ e - 2
anc ca: ed Y, (x> there Tn:s basis function 3(x,y,z) is even C
CONtINUOLS  INIS mckes Sp.ines ottractive as compared to Hermite
tri-cubics However, 1% turns out that the support of cny basis function
covers 04 adjacent elements

1 ! il i . . [ 1

Let us summar ze and conciude the comparison of finite elements

and splines by the followirg 3 statements.

(1) Tricubic splires have basis functions involving !ess parcmeters thon
Hermite tricubics. This may be viewed beneficial. On the other hand it
also mecns that we have less flexibility unless we decrease the size of

the elements

(2) Splines are smoother. This mckes them more useful in interpoiation
problems. However, in probiems of representing o fieid governed by a
differential equation, we haove an additional enforcer of smoothness.
This was cailed the field contribution to the normals in section 2. 4.
For this reason spilines are preferred 'n pure interpolation probiems,
whereas Hermite polymomials are preferred in the finite element solution

of field equations. Confer the discussion in Strang-Fix (19730, p. 6B1.

(3) Due to the larger support of splines, the [inear system wiil be less
sparse. In on oversimpiified way, we may talk of a larger bandwidth as
compared to a system resulting from the use of Hermite tricubics. It
appears that, whatever may be gained by a decreased number of parameters
and by greater smoothness in case of splines, is paid for by a larger

bandwidth slewing down the eliminction procedure

1
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2.6 Approx:mate explicite Greens functions

Frequently the oldest methods are the best. Hardly ever they cre the
worst methods computationally Computers were unovailable ot earlier
times. Take Stokes’ formula. It yieids the geoida! undulation at one
point in terms of gravity cnomalies all over the giobe It i1s hordly
necessary to point out the cpproximations under lying Stokes formulc as
well as the corrections which partly make good for them The usefu!ness
of Stokes formula as well as of Vening Meinesz formula and their
refinements is undoubted. Applications are, however, restricted to arecs
of moderately varying topography.

Stokes’ and Vening Meinesz’ kerne!l cre expl!icitely known Green's
functions of boundary value problems for the sphere. We are in a similar
situation as, when dealing with a large system of linear equations, an
a-priori known inverse of the coefficient matrix is available. If the
boundary value problem is discretized in agreement with a discretization
of the gravity anomalies in terms of N block averages, we obtain indeed
such a system of N linear equations in N unknrowns. If the inverse is
known, calculation of the solution requires N steps for one particuiar
unknown and N* steps for all of them. This is not impressive in itself
because we know that in case of a sparse system of the type mentioned in
subsection 2.4 we can do better, namely solve for all unknowns in O(N%)
steps. In case of evaluating the discretized Stokes formula, an
important additional bonus is available, namely the remote zone effect.
It implies that of the N steps necessary to evaluate one specific
unknown, many can be lumped into comparatively few new steps, and many
may even be omitted altogether. The number of new steps to be carried
out is a fraction aN of N, where & is viewed as a fixed constant The
constancy of o is based on the following argument. Suppose that a
certain block design is used for the approximate evaluation of Stokes

integral . Near tha point of evaluation we use averages of gravity
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anoma, ies over tre smaliest blocks available, say "x!” biocks. ‘h:s
4 corresponas to N = 300x180 = 054809 Al o moderate distonce we moy i1ump

blocks to 2°x2” and so on  Very distont biocks may be omiited, In

X

3 particular in cose of Vening Meinesz’ formuia 1Y we quadruple N,

from 1°x1° blocks to 30'x38’ blocks, any of the lumped blocks

proceed:ng
in the obove design is soi:t into 4 new biocks. Hence the number of
steps aiso quadruples.

It appears thet the effort needed to calcuiate the geoid at one
point (block center) is aN, and aN* for N points. Hence the method :s
still ON®), but the constant hidden under the “0"-symbo! is very small
1 ) Finite eiements are O(N%), and consequently asymptoticaliy better.
However, the constant hidden in OND) is large. The breok even point is
not exactiy known now.

If geoid or deflection of the vertical are needed oniy at one
point or at o very smaii number of points, the explicit inverse method
is the best, namely OQ(N) with o very small hidden constant. However it

must be stressed that the explicit inverse method relies on a special

type of homogeneously distributed ond nonredundant dota. There is no way
to vary the weights individually for the blocks. Additionci data are

difficult to incorporate in o theoretically satisfoctory way.

2.7. Exploiting rotctional or translationg! symmetries.

2.7 1 _Invariance of normal eguations under a group of transformations.

We are not referring Lo o method that stands for its own as those

described thus for. We cre dealing with a technique that can be opplied
in conjunction with ony of the methods described in subsections 2.2 to
2.6, provided that the distribution of dota satisfies certain i

requirements which are rather stringent.
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If the pattern of measurement-locations and -weights is invariant
with respect to the group of rotations around on axis, or with respect
to the group of translations in. 1, 2, or 3 dimensions, then this
symmetry is reflected by the system of normal equations to be solved. Of
course, proper care must be taken, that the parameterization of the
potential conforms with the symmetry. The normal equation system is
invar iant with respect to one or more transformations generating the

group, provided that the unknowns are proper!y renumbered. Let

Gx = r 213

denote the original normal equations. Let

x = Hy .14 :
be the transformation taking into account the translation or rotation
followed by a renumbering. The transformation will be orthogomal, i.e.,

H'H-TI (2.15)

The new normal equations are
T
HGHy = H'r 2.16)
They are identical to the old ones. Hence

H'GH = G or GH:HG QD

Two matrices which commute share a common system of eigenvectors. It
follows that an invariont subspace of H is also an invariont subspace of
G. Invariont subspaces of H are usually easy to identify. H reflects
only the symmetries of the problem ond is independent of other
structural properties. The knowledge of invariant subspaces allows the
decomposition of the normals (2.13) into several independent systems of

smaller dimension.
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2 72 Qutline for the case of rotational symmetry around on oxis

Assume that the system is invariont with respect to a rotation around

one axis by an angle of
f: 2X
K

This case arises, if 5 degree by 5 degree mean gravity anomal ies are
taken as mecsurements ond if the field is porameterized by a surface
layer with constont density in N = 2582 blocks of size 5°x5° We then
have k = 369/5 = 72. Imcgine the parameters (block densities) grouped
according to longitude. The groups ore numbered according to increasing
longitude. For o certain fixed longitude, we imagine a numbering
according to decreasing latitude. Note that a rotation by /A carries all
blocks of a certain longitude A over into blocks of longitude A+ /3.
Hence o cyclic renumbering of the groups of biocks is necessary in order
to ensure invariconce of the normal equations under the transformation H.

Hwill be of the form

-~ Ij
I
L

H = I (2.18

L Tr |
The size of the diagonal biocks I is implied by the number of blocks
having the somz longitude. Invariant subspaces of H, which is a
permutation matrix, are immediately specified. They are given by the k

block-columns of the following unitary matrix

[ Zoo Z°1"' 24.8-1 ‘l

Z
1o (2.19)

1
Z T
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with
. x
-lrs 42
Zoc € L ; rs=01..k-1
(2 .22
T .. unit matrix . i:/-1
A parameter traonsformation
x:Zz 2.20
will decompose the normal equaotion system into k independent systems of
size N/k. Their solution will require an effort proportional to
3
L3 ﬂ)
(A 2.22)

Since k = OWN), this effort. is ON®). Of course, also the computations
required to transform the system must be taoken into account. However
here one may employ fast Fourier transform techniques.

Transformations like that one outlined cbove have been used before
in other disciplines. They hove been used in geometrical geodesy by

Meiss| (1869) in order to analyse the strength of regular triaongu!ation

chains. Their first use in physical geodesy is due to Colombo (1989).

2.7 3. The effort of the TASC group.

It should be mentioned that translational symmetry requires observations
covering an infinite line or an infinite plane. If the domain is
restricted to a finite rectangle, boundory effects destroy the symmetry.
Nevertheless, ore is cble to salvage most of the saving encountered in

the undisturbed case. The methods are more involved. They have been

widely used in picture processing. Recently an effort has been made by




TASC (= The Analytic Scrence Corporation) to anoiyse geoohysical dota
distributed reguioriy on an arbitrorily Jong line or within a smali
rectongie Confer Helier, Tait and Thomas (1977), Tait (1377

The computalionai effort .n both cases is proportionai to N log N
where N is the size of the | near system to be solved Hence N is equal
to the number of unknouns In a parameter mocei or equai to the number of
measurements in a collocation model. The approach of the TASC group is
interesting. It rests on two techniques, namely (1) the
Fast-Fourier-Transform (due to Cooiey and Tukey (1865)) and (2) on the
block decompos:tion of block circulant matrices as out!ined cbove. In
cddition to these two ingredients, the authors empioy a number of tricky
moneuvers in order to tackie the above mentioned undesirable boundary
effect. By using o transition from an NxN Toeplitz matrix to a 2Nx2N
block circulant matrix, end by empioying o data window, they finally
arrive at o linecr system in transformed space where o few diagonals
near the main diagonal are strongly dominant. After neglecting the
element outside this band, and after adding a small muitiple of the unit
matrix to the coefficient matrix, the bandea sysiem is soived by
Cholesky.

We are unabie to present the details in this report ond refer the
reader to the quoted original ar'ticlies. We only make the following 4

remarks.

(1) The solution is approximate, even if the method is cpplied to
regular data on o siraight line segment or in a plane rectangle. The
errors come from two sources, namely (a) the neglection of elements
outside the bond ond (b) the addition of the small multiple of the unit

matrix. The procedure (b) results in deemphasizing the weights of

observations near the boundary of the region. The authors give error

estimates which are favorable. However, it is not cliear whether such

favorable error estimates are available for other situations then those
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considered by the outhors. They test their method in predicting gravity
anomal ies from geoid heights by a collocation procedure. Thus they
deduce a high frequent output from a low freguent input. (Cf.

Meissl (1971) for a discussion of the frequency content of various
quantities related to the earths disturbing potential). It should also
be tested whether deducing a low frequent output from o high frequent

input can be done with errors of the same small magnitude.

(2) In the case of o two dimensional area, the method works strictly
speaking only for a plane region. Mapping a part of the sphere
(spheroid) onto the plone causes distance distortions, as the ocuthors
point out. However they do not point out that these distance distortions
interact with the covariance kerne!, causing it to fail to fulfill
Laplace’s equation any longer. Harmonicity of the coveoriance function is
an inherent assumption in collocation. The authors map the systems of
meridians and parallels onto o rectangular grid in the plane. Such a
mapping has appreciable distonce distortions. It is well known that
there are mappings which perform better in this respect. Perhaps one of
them should be used.

(3) Intuitive insight into the method can be gained by the following

‘consideration. Consider the familiar collocation problem for two random

vectors:
-4
Y= Cye G X (2.23)
We assume thot x and y ore related to discrete equidistant points i = @,
1, ..., non the line. We ossume homogeneous processes, hence Cy, is @

symmetric Toeplitz matrix:

C

R ET R RS (2.24)
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We assume that C is of the form
Cow = C*D (2.25)
i where C is positive definite Toeplitz nnd D is diogona! and positive
definite. D is due to meosurement noise. The main problem is Lhe

colculation of
z: (C+D) "% (2.26)
‘ i.e. the solution of
(C+D)z = X 2.27

= As TASC proposes, we extend C to a 2n x 2n Toeplitz circulant matrix €

where
Cx 0 £K ¢ n-1
| =10 Ken (2.28)
Cian-ky N+T & R ¢ Zn-1
D will also be diagonally extended to D as we show in a moment. We

extend x by zerces
% (3) (2.29)

ond thus obtain the system

(C+D)T:=% (2.30)

This system is not equivalent to the earlier one (2.27), in the sense

that the restriction of Z to the first n components is the solution of
(2.27). The reason for the failure of (2.30) is the following one. The
{- system (2.39) predicts y not only from the measured x. 5 1=8,1, .,
n-1, but also from the artificially assumed values x; =8, i =n, .,

2n~1. Hence the prediction is theoretically wrong. However there is
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still the motrix D which can help us to make the prediction nearly

correct. This can be accompiished by assuming very iarge elements of D

ot the positions ( = n, .. ., 2n-1. This amounts to the superposition of
very heavy noise on the artificially assumed meosurements x, =3, i = n,
.., 2n=1. Hence (2.30) will lead to a nearly correct prediction.

We now coply the discrete Fourier transform toward (2 33)

Introducing the 2nx2n Fourier matrix

_ariik

~ 4 ‘
AR Ficpze 20 LT 2 31

the system (2.30) goes over into

~

(F+&)7 -3 (2.3

with

Rl
Rl

x
m

(2]
m
- o
D o
a1

(2.33)

vsd{
L]
mm
x
My XQ

]
At
x

F" is the Hermition adjoint of F. Hence F" is also equal to F~"

I is now diagonal. This is the benefit from applying Four er
transformation to a Toeplitz circulant matrix. Cf. also the discussion
around equation (2.20)

B is a Toeplitz circulant. Hence it appears doubtful | present |y
what we have gained. However one can verify thot the subdiagonal bands

of A decrease as one goes away from the main diagonal. This is perhaps

intuitively cleor if one remembers that the Fourier coefficients of the
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step function

0 O ¢t &
S(t) (2 34)
1 et < 2y
cre given by
2 (1-(¢-9") (2.35)

2rnt

The tapering effect of the subdiagonal bands can be made more pronounced
if the transition of smoll elements of D in [B, n-1] to lorge ones in
(n, 2n-1] is smoothed out somewhat. This couses "data deemphasis” of x,
near the interval ends.

The next step is to neglect the off dicgonal bands of & up to a
small number m (m = 5 to 18, or so). This truncated banded system
version of the system (2.32) is now solved by Cholesky in 0(n) steps.
The rest can be accomplished in 0(n log n) steps if the Fast Fourier
technique is employed.

We leave it with this oversimplified picture of the algorithm
which could be extended to the 2-dimensionci cose. It is interesting to
note that the above mentioned "data deemphasis effect” is also

encountered in the presentation of the real TASC algorithm.

(4) Shortly before finishing this report, an article by
Bitmead~Anderson (1988) came to my attention. The authors show how an
nxn Toeplitz system con be solved in 0(n log*n) steps by a doubling
mathod. The matrix is subjected to some mild restrictions, however
reference is made to other work by Brent et. al. (1988), in which an
O0(n log n log n) algorithm is specified which achieves a solution
whenever it exists. It should be noted that no approximations are

involved as they are in the work of TASC. Of course, the question arises

again how large the constant hidden in the "0" symbol really is.
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2.7.4. Rauhala’s array algebra.

Another way to utilize symmetries was pointed out by Rauhala. Confer
Rauhala (1588) for details and further references Also Snay (1978
gives an introduction to Rauhala’s “array algebra” It is an application
of the concept of multilinear mappings between tenmsor spoces. Let X, Y,
I denote 3 vector spaces of not necessary equal dimension. Consider the

space | of tensors:
T XeYe®Z (2.36)

An element of this space is represented by o three-dimensional array
bojk - T con be viewed as the linear span (set of |inear combinations) of
vectorial tensor products xeyez with xeX, yeY, zelZ. The tensor
generated by x@y @z has elements ti;x = x;y;z;. Consider three further
vector spaces X', Y', 71’ of arbitrory dimensions I’, J'. K'. Form the

tensor product T’ = X'@ Y'®@ Z’. Let A, B, C be |inear operators

x's AX
By (2.3
2':Cz

L<.
"

Define a linear map T—=T’ in the following way. Let the image of xoy®z

be Ax ®Ay@ Az. Extend the domain from the set of tensor products to all
of T by means of linearity. Thus a map A@BaeC from T-T’ is obtained.
Suppose, temporarily, that any of the maps A, B, C is invertible. It is
easily proved that

(A@Be@C)" » AteB'eC (2.38)

Here the benefit from array algebra becomes transpeorent: instead of

inverting a huge matrix of size (IJK)#(IJK), one inverts 3 matrices of




sizes 1*1, JxJ, KxK.

Assume now 1’ > I, J' > J, K’ > K and consider the least squares

problem

t'+v - (A@BoeC)t 2 39

with teT, t’eT’, oand ve T’ denoting the residuals. The 3 least squcres
problems
x' + v, = Ax

y'+v Vv, = By (2.49)
2'*rv,:=Cz

are solved by the pseudo-inverses
X ‘A+x'
y = B'y' (2.41
z - Cz2'

If the rank of A equals the number of its columns, then
At - (ATA)TAT (2.42)

and similarly for BY, C*.

Rauhala shows thot the pseudo-inverse of A@BeC is given by
(AeB®C)"-A*eB'eC” (2.43)

A proof follows easily from geometric reasons based on ‘range-space’ and
"mul | -space" considerations. We do not give o complete proof here,
because it requires a number of formal definitions. We merely mention

the following facts:

(a) The matrix A maps its domain space one to one onto its ronge space.
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The orthocomplement of the domain space 1s the nuli-space

(b) The pseudoinverse maps the range space inversily back onto the

domain space. It maps the orthocomplement of the range space onto zero.

(¢) Domain space and range space of A@B®C are the tensor products of

domain and range spaces of A, B, C. Hence (2 43) is essentially reduced

to (2.38).

Thus the least squares problem (2.39) s solved by

t:(At@eB'@C*) ¢’ 2 44)

Let this outline be enough. We just mention that generalization to
tensor products of arbitrarily many factors are immediate. Rauhala will
also forgive that I did not use the most generalized inverses he has
ever invented.

Applications of array algebra are restricted to gridded problems
defined on regions being of the box-type. The grids must be rectangular,
however the spacing between gridlines may very. The question still
remains how familiar problems of physical geodesy are transformed into
probiems of array-algebra. Raouhala states that this cannot be done
without some "cheating a la Gordian knot". The cheacting may perhaops be
comparable to that onme encountered during the transformation of a
problem formulated for a smal! spherical rectangle into o tramsliation
invariant problem defined over a plane rectangle.

Let us discuss the computational effort for the case of two vector
spaces X, Y of equal dimension n. The tensor product T = X®@VY has

dimension N = n?%,

The effort to naiveiy solve an NN system requires
ON®) = 0(n®) steps. The effort to invert 2 matrices of mxn is 0(n?) =

oND) . Tt may be shown that o solution of the system utilizing the
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decomposit on A@B can also be done in O(N%) steps. This is

asymptoticaiiy the same effort as 'f a general sparse system resulting
from a 2-dimensional layout is solved by the nested dissection method.
Confer the discussion in section 2.4, in particular the first of the 2

remarks given at the end of subsection 2.4.
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3. Qutline of the finite element aopproach.

3.1, Herm . te-cubic representation of the field
J. 1.t The four basis functions for the unit interval
Let

x () + (x-1)"(2x+1)

wix) = x(x-1" 0 ¢xed 3D
and define

Vo (X) = X(X) s 92y -3kt ‘4

Yoo (X)=c0(x) = x> - 2xt+ x

Voo (X) 1 x(1-%) = - 21x3 + 3x* (3.2

v, (x) == (1-X) - %3 - x*

Graphs of these 4 basis functions are shown in figure 3.1

Vi

1 1 |
ol a4t 8l 4, 1Bl A, 1 8l T

Fig. 3.1 Graphs of basis functions in unit interval

Note that the first subscript in w:;Cx) refers to the location, i.e. x =
Q@ or x = 1. The second subscript refers to the degree of the derivative
which is equal to unity at that node.

The 4 basis functions solve the following interpolation problem:

G 3 e e,
[TV YoM LR




given

F(0) * Cop (1)« Cyp
{0+ o f) - c o0

find a cubic poiynomial interpoiating these values. The soiution s
poly p S

4
O X eyl 0 x <1 39
L
We also introduce the derivatives
o) - 2 ¥ lx). k:o.1.2 3.6)
quq adx® T¢ J T
Remork: The coefficients of
> (4
Vi () + hZ() Crije X (3.7

are stored in the 4-dimensional or.ay PSC(K,I,J,L) during execution of

our computer progroms described in chapter 6

3 1.2. Interval of length h

Let
‘R s Ry [X
'yij(x,h) h "rcj(h); O¢xs<sh (3.8
These functions solve the above interpolation problem with data given at

x = 8 and x = h. Again we take derivolives of these tusis functions:

k

d
Y iy (x;h) = < Yylxih);, k.02 (3.9




Obviously:

"rk.‘.j (x;h) - hik Ykij (%,{) (3.10)

3 ! 3. Bicubic polynomicl in a rectangle with sides g, b

Taoke
Vixiyiniy (xyjab) - Viyix () Yiyiy (yib)

i 0¢xsa (3.1
‘ 0O¢y<t«b

Note: the first two indices refer to the location, the second pair
refers to the degree of derivatives!
The functions (3.11) solve the following interpolation problem:

Given

f(0,0) = Caooo F(O.B) * Coroo
fy(0,0) * Cooo1 fy(O.b) * Coton
X : (3.12
f,(0'0> * Coou0 :
fxy(o'o) * Coon fyy(o.,b)' Ca114
find a bicubic polynomial
k) 3
2 flxy): 2 X apxy (3.13)

r:0 $:0

R STy el

|

2t
3
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interpoiat ng these data The solution is

] A . (xy;alb)

fOey) o‘.x'ZL;:J.JyCL"°>'Jx’yY‘*"J*JY '
0 xta (3.14)
0ty ¢tb

3.1.4. Tricubic polynomials in a box with sides a, b, ¢

The extension to 3 dimensions is obvious: In the interpolation problem
we prescribe the nodal derivatives shown in table 3.1 at the 8 corners

of a box with side-length’s q, b, ¢

Je,dy,dn {000 001 010 011 100 101 1O 111
Derivative f. fz fy fyz fx 'Fxl fvy fxyz

Table 3.1

Number ing of nodal derivatives in 3 dimensions

315 ¢’ continuity across element boundaries.

Consider an n =1, 2 or 3-dimensional region divided into elements. For
n = ! the elements are intervals, for n = 2, 3 the elements ore
rectongular boxes. For n = 2, 3 we assume that a corner of an element
does not touch the interior of a face (boundary segment, boundary
rectangle) of on adjacent element. Otherwise, the elments need not be
of the same size. Take as an example the partition of a region in R

shown in figure 3.2.

ol e TR T
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Sample element partition in 2 dimensions
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Assume that the Hermite nodal values are prescribed at the corners. Then
a function may be interpoiated into any of the elements. It is an
n-cubic polynomial there. This function is continuous and has
continuous first derivatives everywhere. Such a function is said to
belong to the ciass c’

The proof is easy but not entirely obvious. Let us sketch it for
n = 2. Toake any segment separating two elements, e. g. the line
segment A-B in figure 3.2. The limits of F(;,y) from the top and bottom
elements are two cubic polynomials f,5p(x), faorrom(x) in x. However such
polynomials are completely determined by the values f(A), f,C(A), f(B),
fe(B) which are common to both poiynomials. Hence the polynomials must
coincide. The reader moy wish to extend the argument to the continuity
of fy across the segment A-B. It becomes transparent why the mixed

derivatives f,y ore needed at the nodes.

Al A XTI Pt PP




3.1.6. Comoound elements.

We will encounter functions which are rough in some areas and smooth in
others. In order to rep-esent them properly and cconomical iy we |ike to
be aoble to change the size of the elements in o way that is more
flexible than that indicated in figure 3.2. In order to achieve this, we
must sacrifice something, namely the simplicily of the elements. It will
be sufficient to outline the procedure in R™ and to consider the

“compound element” shown in figure 3.3

6 7
h
- S——— ©-————05
|
1 42 3

Figure 3.3. Sample of a compound element

The compound element shown has n = 7 nodes. At each node i four nodal
parameters are prescribed. They are (i), f,(i), f.(i), ., (). If a
point u is to be interpolated which is situated in the upper quad, we
just take formula (3.13) specified cbove. Note that also the artificial
node h may be viewed as a node of the upper quad. Its nodal values f(h),
fy(h), fx(h), fuy(h) are interpolated linearly from these of i = 4 and )
i =5 alone and do not depend on those of i =6, i = 7. Having nodal

parameters in h, it poses no difficulties to interpolate points in the

lower quads. The interpolation formula for any point x in the compound

quad may now be written as:

[ |
fx) e 2 2 ¢y (xy) 315

te1 j-f
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The index i refers now to the nodes, the index j to the nodal
derivative The basis functions &,;(x,y) of the compound qued are
piecewise cubic polynomials. They are composed of cubic polynomials
hoving os domein the 3 subquads making up the compound quad. Note that
the artificic: node h does not enter the interpoiation formula Its
nodcl porameters are |inear functions of those at the genuine nodes, and
have thus been eliminated. Formula (3.15) holds also for simple quads,
in which case the 6:j(x,y) ore just the v\'qj”}(x,y) in a different
notation,

¢’ continuity within the compound quad is obvious. It is further
obvious that C' continuity holds within a region partitioned into simple
ond compound quads in o way that any node of a quad is shared by all

neighbouring quads. Figure 3.4 gives an example of such a region.

Figure 3.4. Element partition in R®

using simple and compound elements

Of course, alternative shopes of compound elements can be designed.

!
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Figure 3.5 shows some of them.

Figure 3.5

Other examples of compound elements

é The idea is always the some: decompose the elements into subelements of
E simple, i.e. rectangular shape. Make a choice of nodes which you |ike to
retain in the final compound element. The nodal porameters at the other
nodes must be |inearly expressible in terms of the parameters of the

a retained nodes by |inear interpolation (not extrapolation!). After

specifying nodal porameters at the retained nodes, interpolation of any

location is done by a formula like (3.15). The basis functions &(x,y)

are obtained by specifying parameter values equal to zero except for one

parameter where a value of | is specified.

3.2. Shape functions.

For presentational purposes it is useful to introduce shape functions.
Consider a region subdivided into finite alements as for example that
one shown in figure 3.4. Lobel the nodes in some way by i = 1,2, ... At

each node, label the nodal parameters (e.g. f, fy, fx, fuy) by i =

1,2,3,4. For each pair (i,j) consider a function Sij(x,y) which has zero

; nodal values ot all nodes i’+ i. Furthermore, at node i, all nodal
parameters '+ | are also zero. Sij(x,y) will be nonzero only in
elements adjacent to the node i. This feature is a great advantage
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because precisely the locality of the shape functions Sy (x,y) is
responsible for the sparsity of the normal equations to be derived
later. In a particulor element adjacent to node i, Si; (x,y) of course
coincides with the local functions 6j(x,y) introduced earlier (cf. equ.
(3.15)). Hence the shape functions S (x,y) are nothing new. In the
later developments we will mainly deal with their fragments, the element
related 6j(x,y)’s. However, many interrelationships are more clearly

explained, if the globally defined functions Sij(x,y) are used.

3. 3. Contribution of the field to the norma!l equations.

In conventional least squares setups, the normal equations are formed
from observations. Observations will also contribute to the normal
equations in our case. However there will be another contribution. The
harmonicity of the field is not automatically implied by the Hermite
cubic representation. Complete harmonicity is practically incompatible
with this field representation. All that can be done is on approximate
fulfillment of Leplace’s equation. This will be achieved by minimizing
the integral over the squared Laplacean of the fie!d. This integral will

give the additional contribution to the normals as announced earlier.

3.3.1. Reasons for excluding the Ritz method.

Our least squares approach may be called an old fashioned one. At least
this is indicated in current treatises on finite elements (cf. Strang;
Fix (1973), pp. 133 to 134). In these treatises, attention is focused on
more modern principles due to Ritz ond Trefftz and generalizations of
them published in the laost few decades. Confer Oden (1979). Let us
explain why we do not propose the Ritz principle. (I tried it in

numer ical experiments, but it gave poor resulis!) The Ritz principle




| is successfully used in the following typical situation

Find a solution of

av - 0 in 8

(3.18)
v *g on Jd8

This is the familiar Dirichlet problem. However not Dirichieticity is
the point. We could have used Neumanms boundery conditions as well, or

\ even a mixture of both. The decisive point is that fixed boundary values
ore prescribed. The Ritz principle replaces the above problem by a
variaticonal one:

Find o solution of

2
%/19““1” dB = Min. (3.17)
B

subject to

V= g ondB (3.18)

The variational formula is slightly more complicated in case of Neumanns
boundary condition, but this is irrelevant presentiy.
The next step is to replace V in (3.17) by its finite element

representation, i. e. by

Vo 2V Sy ixy) (319
&

Here Vij are the unknown nodal parameters and Sy (x,y) are the knoun

shape functions. The functional (integral) to be minimized becomes a i

E. quadratic function in the unknouns V. The fulfillment of the boundary
a conditions V = g ot 9B can not be postulated in a strict sense. One has

to be satisfied that V = g ot certain points of the boundary
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and perhaps also that some derivatives of V and g along the boundary
coincide at these points The boundary conditions thus yield a linear
set of constraints for the unknowns Vij. Minimization of a quadratic
functional subject to !inear side constraints is a standard problem
which leads to the familiar |ineor normal equations whose soiution are
the Vy; .

Consider ' a sequence of partitions of B into finite elements such
that the diameter of the largest element goes to zero. It is also
required that the shape of the elements is not too badly distorted as
the diameter tends to zero. In trectises on finite elements it is proved
that under fairly gereral conditions the finite elment solution
converges to the exact solution of the original problem. The main
advantage of the Ritz method over the more primitive method indicated
above ond to be described in detail below, namely the method of

minimizing
7 [av*dg
2 a (3.20)
B

subject to

V - 9 at I8 (3.21)

is the following one: The Ritz method involves a functional defined in
terms of first derivatives. As a consequence, one may use shape
functions S (x,y) which are simpler than those required for the other
method. The functiomal (3.28) is defined in terms of second derivatives.
It is shown in the literature, that our piecewise cubic polynomials,
which are C' continuous across element boundaries, are an admissible set
of trial functions for the least squores problem (3.20, 3.21). However
the Ritz problem can be treated successfully with trial functions which

. . - . o .
are only piecewise bilinear and just C° continuous across element

boundaries. Such functions require only one nodal porameter, namely the
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function value f at the node. This holds in !, 2 or 3 dimensions. Recall
that our C' continuous shope function require 2% nodal parcmeters, i.e.
2, 4 or 8 depeniding on the dimension d. The decrease in number of
parameters offers one advantage although it must be balonced against the
need to use smailer elements because of the more primitive nature of the
shape functions. In any caose, the computer programs turn out to be much
simpler if bilinear shape functions are used.

But why does the Ritz method not work in our gecdetic environment?
In geodesy the boundary values are the result of meosurements.
Measurements are not performed everywhere and they are subject to
observation errors. In some aregs the measurements are redundont; e.g.
there may be measurements of V as wel!l as of some components of the
gradient of V. In other areas the measurements may be sparse. There may
also be measurements in the interior of B. The constraints in our
minimization problem become weighted consiraints, so to speak. A
problem of balancing the weights arises. The normal equations cre the
sum of two contributions, naomeiy that one from the minimization of the

functional, and that one from the observation equations. Symbolicalliy
(p,G, *+ P,G,) X = r (3 22)

Suppose that the functiona! to be minimized is the Ritz—functional, i.e.
p 2
7 [|ared v| dB (3.2
B

If we choose p, large and p, small, then the gradient of V will be made
small at the cost of lorge residuals at the observations. In the |imit
p,—~a, we get a constant V. If we choose p, large in comparison to p,
we treat the observation equations practically as constraints. The

minimization procedure wili try to match the observations exactly. This

may lead to absurd resullts in case of redundant observations. Even in




AA Rt — q

- 45 -

case of nonredundancy, the resulting function V may be far off from thct
one minimizing the gradient. Hence harmonicity is not ensured. Another
disadvantage is encountered in subsequent error propagation studies. If
one tries to propagate observation errors to some desired quantity, e.g.
a gradient at satellite altitude, the resulting error will reflect the
small p, rather thon the large p,. This is extremely undesirable,
because the propagated error is then mainly due to a "poorly observed”
gradient rather than to the observation errors. These disadvantages are

to o large extent avoided if we choose the minimizing functional as

-;-/(Av)loLB (3.24)
5 )

From the above discussion it is clear thot weights p, should be rather
large in comparison to p,. p, weighs now the failure of V to be
harmonic, whereas in the earlier cose it weighted the failure of V to be
a constant function. There is a lot of harmonic functions which deviate
considerably from o constant function.

If we minimize the functional (3.24), there will be deviations
of AV from the zero function; but these deviations will be small. Hence
the weights p, can be chosen large in comparison to p,. Errors
propagoted after adjustment will therefore mainly reflect the errors due

to the smaller weights p, which belong to the observations.

3.3.2. The least squores contribution of the field.

After discussing the reasons for choosing the functional (3.24) for the
purpose to ensure approximate hormonicity, we turn to the technicalities
of calculating the contribution of this functional to the normal
equations. Let us first outline the procedure on hand of the shape

functions S;;(p). As explained earliier, the index i refers to a node

while the index j refers to one of the parameters at this node. The
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argument p may now be view2a as |, 2 or 3 dimens:onal In case of

detailed discussions we shall mainiy stress the case of 2-dimensional
poiar coordinates, where we write S, (r, @) instead of S (pJ

The potentic! I1s represented as
v § v, S, (P (3 25)
ts Leplacean is

AV = 2 V; 85,(p) (3 26
(]

I7 2-dimensional polar ccordinates are used, the Lopicceon is

1 1
JAYVER V,.,. *F v, * Y Vyy (3.27
In order to have something specific in mind, the reader may imagine the
region B in the form of a circular ring. In polar coordinates, the ring
becomes a rectangular region. It may be subdivided into simpie and
compound elements as shown in figure 3.6(a) The subdivision shown there

corresponds to a subdivision of the ring which is shown in figure

3.6(b). r

b -+ - <r - -~ Tp - L 3 JL - .~ e - -~ - L

Figure 3.6 (@). Partition of a circular ring

represented in poiar coordinates
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Figure 3.6.(b). Portition of a circulor ring

represented in cartesian coordinates

Such a subdivision may be chosen if the fiald is anticipoted to be more
detailed in the vicinity of the inner boundary. Substituting the
Lapiacean (3.27) into the functional (3.24) gives

E 2

|
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| Minim.zing with respect to the V,j leads to the normai equations

oF 0 i .. nodes (3.29)

—

5 j ... pecrameters/node

L

(ol

cr

> /AS‘,(P) AS('_"I(P) O"B(P) Vi.y = 0
i 9 / “ (3.3

i ... nodes

J ... parameters/node

Up to a multiplication of these equations by the weight p,, we get the
contribution of the functienal (3.24) to the normal equations. Note that
for a particulor equotion labeled (i, j), there are only a few nonzero

coefficients. IT we write the equations as

5—_, 9ij, iy Vigr = 0 (3 31
then
i 9.1 * O (3.32)

1

uniess the nodes i and i’ are "neighbored”. Two nodes are neighbored if
there is an element in which both nodes participate The sparse

structure of the normal equations becomes visible now.

3.4 Detqiled instructions for computer implementation. |

If one works with a computer, the above outlined procedure is not l

recommended. It is preferable to decompose the total "emergy" E %

o vt r——— —
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into contributions of the individual elements now denoted B.

E’§Ek (3 33)

with

J

1 2

B T/ [ Vi A8 )] 48P 3.30
ojtobd L

By LY

In aogreement with the earlier notation Gg(p) for the element—internal

basis functions, this may be written as
y 2
£t/ pa Vi by (p) | d3(p) 3.35)
B LY J

The summation needs to be extended only over nodes participating in the
element. We may form the "partial normals" due to the contribution of

element k:

5 [ [as;plas (p) dB(p)] Viys ~ O (3.36)

' By
or
(k) .
o 9,y VL'j' 0 (3.37

If there are I nodes participating in the element, ond if J is the
numbar of parameters per node, the above is a symmetric system of IJ
equations.

The normal equations (3.31) for the entire region are obtained by
summing al! particl normal equations. The situation is similar to @

network adjustment where partial normals may be formed for subsets
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of the measurements; o subset may e.g. be given by o round of directions
token ot one station. The partial normals are then combined to yreld the

normals of the entire network.

3.4 1. The partial normals of a simple aucd.

‘ We return to the notation of section 3.1.2. for the basis functions in a

simple quad writing:
3 , V (r.?) = ) "Z . ,\/i-r'i*{'jr'j‘f' '\rir'j,:(r.';; n"})-'\r\iv.jv,('f'ff,; ?4'?0) (338)
"r“y-'rJ‘l
The simple quad is assumed to extend over the region
(3.3%
Yo & ¥ & Y4

Our notation cppears complicated now. However we are trying to give

detailed instruction for an efficient computer implementation rather
than trying to please the casual reader with some slick and polished
notation which suppresses the nasty details.
We form the Laplacean (confer (3.9) on the notation for the
derivatives of the y's)
INZADEEDY

VL,'L,'J',.'J.,‘ {‘m,.'j,n (r-r5;0-1)- Yoiyiy (4-%:9.7%.)

le'tgdply!
4
+ r ’Y“’lr'jr' (I"-G,‘ n 'r;)' Y% Lyl ( ¥-Y., ‘fg“fo) t+ (3.48

4
+ 7z Yoo (r-r;,-f‘.-f;)-'rzm;!, (¢-%; Yc'f{a)}
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Let us abbreviate this for the moment as

3
- V e (K) A
AV (r.y) Lr'%r'iq' STy :L;f . )h (q) (3.4

In order to form the normals (3.36, 3.37) we have to evaluate all

integrals
e Y4
i Ki! (x) (') (K) (x) o
= I"'r“‘:jrjviir'év'jr'jy // ¢ Jr( )ft .(v) (V)h (?) rdrdy
Fefo 9*4 .. (3.42)

The coefficients of the partial normals

L'l lelie’ 9 Lriglrdy i L' bylirly' "Le'te'Srly! (3.43)
ore then given by
> I
) irgiv g ; Lrtiglirts (3.44)

g Lriyirly i be'tyJriy’ keoq  Lrlplrdy i trtiyldriy!

It is a great computational advantage that the cbove integrals decompose

Aj into one-dimensional integrals
[
KK KK!
| ::i,yl'rfqi 'Ly ie'dy! T le et T igdgletiy! (3.4%
with
s

R AR Ay

- refo

/ h‘”’jq(q)'hf:;’-v. (4) dy (3.47)

Yedo

wJ:%'Jr
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It is sufficient to outline the further procedure on hand of one of

these integrals. Let us take as an example

r
° : ( r"r‘-(‘) (r- r_r)-d;r. (3 48
Il:rjrir-'fr‘ Yzé,j,. F=fo)’1™"e TOLF'J-r' RS r 48)
F=ry
We substitute
re+eln-n) (3.49)

then

r-r

1
I® / (o(r-ra)i 1) (o(r-Ghin-6) T 49 (3.50)
Lrivlee! qu'-.rfre voelie e Tol;j,.'? e pep(n-n) '
o
By (3.13) in section 3.1.2. this further equals:

4
: drtdd-2-0+1 _dp
I'.'fjri'r'jr'.(r‘,‘ro) /qrz':rjr‘(9)%ir'jr'(9) r,f?(r"r;) (351)

The functions v, ; (9) are now derivatives of the basis functions for the
unit interval. Confer section 3.1.1., equation (3.6). They ore cubic
polynomials whose coefficients are stored in the array PSC(K,I,J,LD
during the computer runs.

According to the outlined rule, we get for any of the integrols

!

y (3.52
e br'l! :
an expression of the form
KK’ i Jetie - dr(k)- dp(K)e 1 .
Ii_,-j,.i.r'j,.' *(n-%) (3.53)

1

f (k)¢ (9 o1
VK iy (9) Wt ptie)igjy @) (Fo + 9(ry- 73 e dp
(-4
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bt e o A

analogous iy

- - dy -y k) et

J ‘jy'
I-L,,j?i_?'jv- * (4= %) !

: 1 (3.54)
]
% Thereby
é’ i (,f - Yo
o T 4o (3.55)

The following table lists the degrees d.(k), dy(k) and the exponents

e(k)
k d, dy e
1 2 g Q
1 2 -1
3 7] 2 -2
Table 3.2

Listing d,(k), dg(k), eCkd); k=1,2,3

e L e

All these integrals are extended over weighted products of the basis
functions and their derivatives for the unit interval. These basis
functions are cubic polynomials in one variable. The first ond second

derivatives are quadratic and linear polynomials respectively. !

Hence ol! the integrals can be assembled with the help of the

PSC-table and the following integraols over weighted monomials:

A

M (ro.n) ’/Xs(ro* (G'ro)X)td-x

o
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Summar izing, we obtain the following procedure to evalucte
Diriyivigs iyt
regdrlys Lrity'irly

for a simple element o & & Iy ;| Yo £ ¥ S P,y

(1] Evaluate the weighted integrals over monomials according to (3.56)
ond tabulate them for B <s ¢B, -3¢t <

[22 Using the PSC-tables, whose coeffiecients are denoted c,,,4(cf.

equation (3.7)!), and the table 3.2 for d(k), e(k), evaluate integrals

over products of normalized basis functions

1
/’Y}L,m) d,,j,,<9) Yd, ()i (o) {'B +(r- '3)?] oo =
0

3 3 !

KK
: t:0 ezo Cdr )it el i L.-'J‘r‘e‘M Lol e(Kle e(r)+1 Crietels!
: 4 (3.5
E () deo =
303 rK!
1 ] . . b J. o
bzo CE; Cd?(x) Ly J,eCaL,,tn') a,'J,'e'Mg.e',o Ly by’ Ly
(3] According to equations (3.53), (3.54) evalucte:
kx'. . : (r —r)j,-ojr‘- d (k) - d.r(’c)."' kK
Lrirteir 1o Lelrire!
: L (g ety (R dyli) e e (3.58)
L?I?L‘!Jy 1 0 l?J,’L?'J?'

0 ¢ Lrjriﬁj#.l?jviyj?‘ <1




and taobulate these integrals

[4] Assemble

3 '

KK !

. KK
KKa1 trirbrlie T tylglyly! (3.59)

v s R, a
9 Lrtylrly ) trity' ey
Thus the partial normals for o simple element are evaluated!

Remark: There are some further computational shortcuts. Because of

symmetries, some of the

Kt xir!
Lrle L ! - ':‘ij "‘?'j‘!'

are the same. Such symmetries could be exploited, but we have refrained
from doing so in our numerical experiments.

Remark: The multi-index-notation is convenient for calculating the
coefficients Qipiyinly; ir'iy'irdy' For subsequent calculations it is
preferable to switch to a two-dimensional orray g The multi-indexes i,

lyimply a node numbering n = 1,2,3,4 as shown in figure 3.7 and given

by

n=2ip + iy *+ 1 (3.68
AT
i =1 n=73 n=4
. = n=2
=0 .n 1 . —> ¢
ly’—' IS’:1

Figure 3.7. Numbering of nodes in o simple quad
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The paorameter numbering per node has been explained above repeated|y, It
is given by
q=2j *jp + ! (3.61)

ond shown in table 3.3

q ir g Math. symbol
| =====s=z==s=s==s======z====z=====
' ! 4 0 v

2 U] ! Ve
| 3 f 9 Ve

4 l I Vg

Table 3.3. Parameter numbering at a node.

We adopt an accumulative parameter numbering by
i =4(n - ) + q (3.62)

In this woy we get g two-dimensional array by:

Jiv T Fipigirdys triglicie! (363

with

TSy 2y ] (3.64)

1 =8i,-' +4’|y’*‘2_jr'+_j9'+ 1

In this way we get o 16x!6 matrix for the present example. There are 16
parameters involved in the simple quad, 4 at each of the 4 nodes. The
- number ing groups the parameters for one node together. Table 3.4

i explains all the details once more.
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node L common math. |onguage

! ! e © @ 9o V at lower left corner

2 ! g 2 02 ! Vg 7=

3 [ 2 ©8 1 @ Ve o =t-

4 ! 2 92 | ! Vg ="

S 2 e ! © @ V at lower right corner
6 2 g t 92 ! Vg ="~

7 2 g | i 0 vV, ==

8 2 g | 1 ! Vep ="~

g 3 f 8 @ 0o V at upper left corner

19 3 8 9 | Vg  ="-

I 3 | A B vV, -'-

12 3 19 1 ! Veg ="~

I3 4 i I g @ V at upper right corner
14 4 | S Vo ="-

() 4 i ! i 0 v, -"-

[6 4 ! ! f | Vg -

Table 3.4, Numbering of nodes and

porameters in a simple quad.

This all is raother irrelevant to the casual reader. It is, however,
essential to the person implementing the method efficiently on a

computer .

Remark: The coefficients g, are functions of: r,, r,, ¢ -¢. It follows
that the coefficients are the same for two quads shoring these
parameters. If all simple quads in a "layer’ r, ¢ r¢r, have the same

angular width ¢, -9, then the coefficients need to be evaluated only

once!

1d
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3.4.2. Partial normals of a compound element

Again it will be sufficient to consider the two-dimensional case and to
g

describe the procedure on hand of a spec:fic excmpie It is the compound

element described above in section 3.1 6. aond shown in figure 3.8

4 (8) 5
7 S -
i
{
& 4z B L
90 b2 ?2.

Figure 3.8. Compound quad.

We start by interpolating the parameters at the auxilicry node 8 from
those at nodes 4 and 5. The function V(r,¢) is given in the upper quad
4, 5, 6, 7 by

3
Viry): ZiVLjG'i.j(r‘rh‘f"f«) (3.65)
Loy 1
It is usefull to note that the basis functions belonging to the upper
nodes, i.e.G4j, 65 vanish together with their first derivotives at the
line from 4 to S Hence, as long as we are only interested in zero-th

and first derivatives of V(r,¢) at this line, we may use the simplified
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representclion

s
Virg): 22 Viey(r-r.g-9) + 0(r-n)?) (3 88)

Loy et
Using o more exoliciti reoresentation we may write

/’

Virg)s 2. [vw.rjyyojr(r-n;q-r:)-“ro,-?(s'-&r,;9;9’1)+
Jrig:0 (3.87)

R

* VFJ"-"? gors (r‘—f‘.,j Fz_"n)- ﬁﬂj‘{(g_ Y./ ff,_-lﬁ)}

The functions Yij{x;h) ore defined in section 3.1.2., equation (3.8). We

cre now able to interpolate the nodal oarcmeters of the auxi!icry

node 8:

—

Vs’j,.'j? )—‘ [vkj,_jq"f?,lgjr( O} r;:f:}’lrjv‘oj (‘!g'cfﬂ(ff(f«) *
el i (3.68)

1

" Vsjr-f‘f 1{3»"’”}' (o j q_r;)’\r??"'l“f( It (fz-?")]

For the functions +;, x) see equctions (3 3), (3.13). Switching to the

Yxer ™

mere condensed notat . on

STl g
" 4 (3.69
m D ot
J clr -9
w“e write tris relct onshio as
X
S 7 \ -
Lo 2w Ve vy Vi) (3 70
2T e
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In an even more condensed form we write

v, 2
Ve = (U, ) NV (3.70
Vs Ve
where U is an 8x4 matrix.
The next step is to form according to section 3.4.1. dealing with

simple quads the partial normals for the iower left subelement. Let

these equations be written cs

6.% 6. 6. et v 1‘
6. Gu Gyt G Vil Lo 3 72)
.G“““ G. G, G*'LL; 'V, %
{GM R - B A

One eliminates the cuxiliary node by the substitution

Vo (U, L) (3.73

Ve

Similar to o paraometer transformation in adjustment by variation of

parameters, we must consider the full transformation matrix implied by

vl [z 7} v,
Wl T } V,
‘Vq | T l v,
VBN ENIRNG




- t -
( 6!
f
e
vo- A - T
and transform the coove normais (3 720, row writien as
1
GV =20 (3.75)
{
gccording Lo
T = .
, AGAV =0 (3 78
1
The result s
r_ LL L - - u." r h
! " 7 Y
j‘ 44 D1 Gvu Grs i Ve
o= W = W - u —- u.{ f :
Gy, G Gy, G | Vz.i .
! " w L w . : s O (3 77)
i s= = — —u
/3
: e Cuz Ty Gqs b Vl, |
i i
v l_ 51 s GS" Veg | ! VS'I
1 - - -
i It is seen ‘hot
- w w
Z -
. Cu * Op
- W . <t
611. * ()1"‘.
—_ . L J
= Ve
w O * Oe U, (3.78) 1
) - i u
Ow * Gy Us
G G
‘ . N
{ i
i
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- L 5%

u
L * sz * 628 uﬁ

(BN

= w
Gie = G Us

= w T
G qu-* qu.uw * uﬁrGeu + U, G’“LLUL, (3.78

[

w roow
vt | G Us t U, Ggy Ug

- Us TG“LLUS

Q|
8

In o similar way we obtain for the lower right quad

o —

PO
Y

i
Y

LA

;Dt

[

L

EIE RS

B

-

(3.79

By a direct application of the simple quad formulas we obtain for the

upper element

-

L

o

o O

XS KK

(3.8%

Now the partial normals (3.77), (3.79), (3.88) of the 3 subelements are

added into the normals of the compound quads




f A r ;s
-~ ! t
!' e G On Ty is Gy, Gy ! Vo
iGu Gn. 1 P2 (as Oy Gh' Ve
: v l
| i
;I Oy O3 Gy Gy Gis Oy Oy 4 |
b O G Gy G G.s G’,‘ Gn‘i . V., [ (3 81) .
; - i . }
i Gp Cx G U sy 6’55 Gy Can | Ve ;
| : | i
Gy Ga  Gw Gu  Gs G eg,; v,
. i |
é 671 6}1 67} (j?‘v C'-,; 67‘ 677 v}. '
L d L J
Any of the submatrices 5. is ¢ sum
- L é‘ LR . v
Gq Gy Gy ot Uy (3 82)

T R A Y . , - L ‘ . ’
where G, =9, G; =9, 5y =€ is acssumed, i one of the nodes i or j :
does not partic:pate ir the subguad L., P or U, 3

1

2.5 More generz! basis furctians

This section may serve us on ouiiine for the construction of shape

functions which 7!) nhove o mcre general aralivtical representation than 1
' piecewise n—cubis polvnomiais, (2) are C'continuous, and (3D are
computatienal !y stiii reasonapiy atfis ent.
The metivat:or to [eok for citarnat ve shape functions may come 1
' from the des -2 to use funct ons .hich conform to the poterticls

c

attenuction n a betier way. It anpears templ ng ‘o replace polynomials ¥
. « ~ [ i v . :
in r by pcivromials ir i/r, for exari's This ‘ooks oarticularly ﬁ

attrect v for elamarts forinar away f2am tre earth surface It olso

bl

spens A way Lo resresent the ootert ai on the ontire exter or of some

sprare by a firnite nuthar 37 ararents 27 o~ nile size This cspect will
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be treated further in the next section.

The computational efficiency of cubic polynomials comes from 2 !
sources. (1) Such polynomiais are easily evaluated, (2) the integrals to
be evaluated in order to form the partial normals of a simple element
decompose into a moderate number of products of integrals over a single
varicbie. The second feature extends to the basis functions to be ‘
out{ined below, the first one extends only partly.

As in section 3.1 1 , one starts again with the unit interval. One
introduces functions 4, (x) such that the j-th derivative of 2 (x) at
the i-th-intervai end is unity, while all other derivatives at this and
the other interval end vanish. It is important to note that the highest
derivative considered this way need not be the same at both interval

ends. To have something specific in mind, consider the basis functions

_ . qroo(x)s 3" - 43 + 1
Yo, (x) = 2x"-13x> + X
Vop (X) = Ix'- x*+ Ix* (3.83)

Yio (x) = -3xT+ 4x3

Vi (¥

x
!
X

In this example the second derivative is only modelled at the left end

of the interval, but not at the right end. If the cbove bosis functions




- 65 -

are changed ‘o
afco(x)- - 6x° +15x" - 10x° + 1
v, (X) - - IxT+ 8x' - 6x° r X

I RS I IRV IR JEVE BV Ve
ZX t 33X T3 z

Ex°- 15 x4 +10 x>

Vo (¥
Y, (X7
v, (%)
Vg (%) *

then we are dealing with Hermite quintic polynomials. At each node the

(3.84)

3

-3x"+ Fx' - 4x

s y )

1
- X'+ =X
o A

IS

zero, Tirst ond second derivative can be prescribed.
With the chosen set of basis functions for the unit interval one

can proceed to any finite interval by (cf. section 3.1.2):

T (x;h) = hjwqu (3:,—) (3 85

As in section 3.1.3., two dimensional basis functions cre again obtained

by forming products
’Yixiijjy (X'y) . 'Y:.J (Xf Q-)"]VLJ(.Y,b) (3.86)

As indicated by the bar over the lost 4, there is no need to have the
same type of basis functions for x and for y. For example, one may use
quintics in x and cubics in vy.

In order to ensure C' cantinuity, the type of basis functions used
in the x-direction should be motched by the element ad acent in the y
direction and vice versa. This poses some problems if one fuses simple
elements to compound el!ements However, as long as the basis functions

cre polynomials, there is normaily a way out of any dilemma. In any

e e e e o




- 86 -

cose, chontinuity must be checked very ccrefully in ail unusual

situations.

Remark: If quintics are used consistently, the resulting function is
even C* continuous. This may [ook attractive. Among others, it offers a
way to force the Loplacean to be zero at aii nodes. However, a heavy
price has to be paid in terms of d> parameters per node (d . . number of
dimensions). For d = 3 there are 27 porameters per node, while in case

of bicubics there are only 8.

The nodal parometers needed in these more general finite element
representations follow automatically from the one-dimensional basis
functions used. Two dimensions are typical enough for our outline here.
Any node hos o degree in the x and y-direction. These two degrees need
not be equal, but they pose restrictions to the basis functions of
adjacent elements. Suppose the degree is 2 in the x-direction and | in
the y-direction. This holds if quintics in x are multiplied with cubics
in yv. Then the 2x3 nodal porameters are automatically given by all

symboiic products of any two elements out of the sets

{7'3%'33711}, {4,%} ¢3.87)

i.e. they are:

\{ V;, V;, »Qy, V;x, V&xy (3.88)

The integration procedure outlined in section 3.4.1. and the partial
normals of a simple element must be modified if other basis functions
thon cubic polynomials are used. The modifications are, however,
moderate. They amount to o change of the integration formulas for the

required products of one-dimensional basis functions and their

—

[ —, .
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derivatives The factors of these products were denoted by

kK’ Kic! i
j irire Lydyly'ly’ (3 89) !

Confer section 3.4.1, in particualor equation (3 59).

3.6. Elements extending to infinity in one direction.

The case of an element extending to infinity in one direction reguires
special attention. We sha!l deal with this problem in detail, beccuse

F use of such elements is be made in our computer experiments. Consider cn
infinite intervai r,¢r <. We choose basis functions

r’l.

r3

X, (r) =5 (3r-2x)

s (3.90)

I'o
Xoq (r) =—F§. ( r- ro)

They tend to zero as r? for row. Figure 3.8 shous the graphs of these

basis functions.

%00 (T} 7

Xoq (1)

“ F=r, [—wo :

Figure 3.9. Samplie basis functions for an interval

extending to infinity
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We combine them e.g. with cubics in ¢, which we denote by
V(9% G %) 4 ¢ 9 <, (3.91)
Hence we deal with the basis functions
Voo (990 s X (0 (9909 %)
Lriglply wlx J (3 92
Cx’o,' .jx.Ly-jy= 01 *

There is no C' continuity problem if an element partition is chosen as

shown in figure 3.10 and if bicubics are used for all elements of finite

size.
Infinite gquad
Wlth V;rLtfer.;f ( f—, (j?‘ \LPO)
rely
«}-compound
L -+ -+ -+ + <+ - -+ - quad with
bicubics
1 simple
quads with
“I" bicubics
B 9'9@ ?:91

Figure 3.10. Element portition making use of

infinite alements
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Next we outline the integration procedure in detail for the infinite
alement. Confer the parallel developments of section 3.4.1 on the
partial normals of a simple quad. The representation of the potential

Vi, 9) inasr, ¢, ¢ 9 ¢ ¢ is
Vingls 3 Vogig X U Vg W90 20%) en
"r""f)r.l\l
The index i’ is fixed at zero (we retain it only for ease of comparison

with section 3.4.1., equation (3.38)). All other indices run from @ to

1. The Laplacean is:
aviry] © Z, ,V‘:r'ivljr'J'q' {Xzi.r'fr' (r) Yoiyy ((f'% )+
trtyjriy
1
P X Vo g (97900 9 %o) ¢ (3.94)
+ ::._'LXOL,_'J',' (r) Yaiyly' (?' Yo Yo - Td)}

This equation is cobbreviated as

] K’ ,
AV(ry) - f—r'%’f.—'iy’ L gy Ty ;?T:fzr,j)r,(r)'hgr,}?, (‘f) (3 9%
The principle
@0 Y
jz“//(Av(r.q))lr'ctro(gf * Min (3.98)
el 4%

leads to the partial normals of the infinite quad:

9‘-r"erJy; Lr'le'Jr'ly! VLr'Lv'Jr'J'{' (3.97)

- N
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In anaiogy to section 3.4.1 , the coefficients follow from the formula:

2 T kK k!
s O i L g fiep Lig'Jieg! (3.98)
9L,-L-’j,.1.j i Gl Ly'lrly’ KK 1 ledetelr lylylyly

The integrals

KK'
iy]y L‘f'j‘f‘
are unchanged. On the other hand:
KiK'

2 . _ ek velk) et
L i Crde! ,/\X (Kl )y ( k’) Xol,.(K') L'y (rl-r olr (3.99
e

Table 3.3 of section 3.4. 1. for the d,, e is stiil vaolid. If one writes
the x4, i in the form

1 L+j-+8
(r) s 2y ise predie 3.100)
Xci Crir to dripet 2+dr+8 (3.4

then o compact 3x!x2x2 table of the coefficients

0sdp &2

. ir =0
Cartrict 4 of o1 (3.181)

o<t &1

may be stored in the computer. This CHC-TAab ‘s the counterpart to the
PSC-Table introduced in section 3.1.1 ~ "n ' help of the CHC-Table

one compules:

4 1
C C SRR A
L,-),— ?J? cZo C}:O de(k)iplre “dplK) et € 3 102

1 - Jprit-dptk) e do(k)eelk)s e()+2

¢ — o
Prewe =1

Pt s g+ b AR e 1 s -




Thereby

P = 2+ dp ()42 +2e dp(k)ee'~ elk)- e(k)-1 (3.103)

3.7. The outer zone.

The infinite outer space of the earth can not be partitioned into
infinitely many elements of finite size. The field is most detailed in
the vicinity of the surface. Hence fairly small elements must be chosen
there. The elements may increase as we go outword. The increase in size
is partly achieved by the natural increase of the surfaoce element rdfdg
or ricos ¢dr dydd in polar coordinates. To a greater extent it is
achieved by a lumping of elements as discussed in the section on
compound elements. At g certain level the finite element partition may
stop at all. The field is then represented in a spherical shell {
(circular ring). It is forced to be (neorly) harmonic there by
minimizing the integral over squared Loplacean. It is now necessary to

ensure in some way that the field in the outer space of the shell is

(1) consistent with the field in the interior of the shell,
(2) approaching zero if the radius tends to zero, and finally

(3) harmonic.

Consistency means in a strict sense, that the outer field is the
analytical continuation of the field within the shell. In o finite
aelement context this requirement must be somewhat relaxed. Not even
within the shel! do we have o strictly analytical field. However, if we
have C’ continuity there, as we do when cubic polynomials ore used,
opproximate C" continuity across the outer boundory of the shell is a

minimum requirement.

There are various ways to deal with the problem of the outer
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field. We shall outline them now.

(1) Choose the radius of tgé outer shell large enough ond force the
field and its first derivatives to be zero there. A large enough radius
means that the size of field ond its derivatives must be beiow the
desired computationa! accurccy. It must be borne in mind that our field

is actually a disturbing field superimposed upon a reference field.

(2) Partition of the outer space into finitely many elements of infinite
size. Refer to the previous section 3.6 on elements extending to

infinity in one direction.

(3) Use of Greens formuia. If potential and (outer) normal derivative
are prescribed at the boundary [T, then the potential in the exterior of

M can be represented by Greens 37 identity. (See e.g. Heiskanen-Moritz

(1857), equation 1-28').

9 1 ov(a) 1
4 V(P) ’/{V(Q)'za'.—?( e(aa)) T Ton 'e(aa)} ar(@l (3 jp4)
r

This formula refers to the 3-dimensional case, [(P,Q) is the distance
between the reference point P and the point of integration Q. Confer

figure 3.11

Figure 3.11. Explains the definition of

outer normal n and distance |




Consider now an element partition within a shel!l around the earth

surface as shown in figure 3.12.
‘ ‘ ; ;

Figure 3.12. Fusing the inrer ond the outer zone

The surface " of integration in equ. (3.104) is assumed spherical
(circular) ond situated slightly inside the outer boundary [, of the

shel!l. Greens third identity may now be applied to any node P situated
at the outer boundory denoted ,. Since V(Q) aond 3

a\:‘mis expressed
linearly in terms of the parameters belonging to nodes situated in the

layer between [, ond [7;, we get linear equations relating V(P) to nodal
parameters of the outer layer (bounded by I, and I,). Let V(Q) be

Lt
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reprasented as

V(@) s 2 ZV §,;(@) (3.165)

cel

Where L represents the set of nodes participating in the outer laver,
and | runs over the parameters of any node. The $i(Q) are the shape
functions introduced in section 3.2. We get

av(a) 24, (a)
L&ZL %— Vi, 5 | (3. 106)

and

¢ LJ L }

4
4 —
V(P) gt { _ZV 5.4Q) —95- Z 95“‘””}4!"(62) 3 107>
ro Y

The amiounced |inear equations are thus obtained:
v(P)s 3 2 .V ' (3.108)
el § YWY

In a similar manner we may even express derivatives of V at P.
Differentiation of Greens formula poses no problem because P is not

situated at I". Therefore 1(P,Q) never becomes zero. For example we may

evalurte
av(P)
Z d;
oV (P)
IA %: %ch (3.109

Representing V(P) and the 'horizontal derivotives® of V ot P in this
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way, and doing this for all nodes of 1,, provides us with a set of
limear equations which, together with the normal equations of the
interior of the shell, will ensure o potantial which s "reasonably
harmonic' outside the earth. A disadvantage of this method, which is
proposed in McDonald-Wexler (1972) and further discussed in Zienkiewicz
et al. (1879), is the need for the evaluation of o number of integrals
which are not ali too simple. The following 3 remarks ore considered

impor tant .

Remark 1: The reader may wonder why we used only V together with its
hor izontal derivatives in the above compatibility equations. The answer
consists of two parts. First we have to point out that the underliying
assumption is that of o tricubic representation of the field. The
"horizontal" nodal parameters V, Vg, V,, Vs are, so to speak,
responsible for the variation of V along the surface .. Secondly, we
should stress that our finite set of equations substitutes for on
infinite set of equations (3.197) in which P varies all over M. The
variation of P and V(P) along % is now logically repiaced by the
variation of those parameters in the cubic represeniction which are
responsible for the behaviour of V(P), for Pel%,.

Remark 2: The discussion in Remork | also demonsirates an alternctive
way in which Greens third identity caon be used in order to ensure
compatibility of the field across [, Instead of using eguations (3. 189)
for Vo, Vs, Vo we could just use equation (3.108) for V(P); however, we
must - it 4 times as often as there are nodes on . A way to do this

wouid .2 to use (3.188) for the nodes P on [, ond also for the points

halfuay between two adjocent nodes. Confer figure 3.13.
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NOoxX X ox %
o x o x o
X x X x x
© x o x o
o .. finite element nodes on I,
X ... additional points p at which

Greens identity is evalucted

Figure 3.13. Pattern of nodes as

explained in the text

Remark 3: One could even go one step further. One could use Greens

identity for more horizontal parameters than this is implied by the
discussion in the foregoing remarks. Excct fulfiliment of the identities
then con no longer be postulated. One would apply weights to the
discrepancies and add their weighted sum of squares to the other
functional to be minimized. In this way one even ends up with a positive

definite symmetric system.

(4) Combination with spherical harmonics. Imagine the potential

represented at the outer boundary I, in terms of spherical harmonics

N 1 +n .
V(P) = ZOWMZ" Com H...(P) (3.118)

We use the symbol "H" because the "S*' is already reserved for the shape

functions. We may also represent the horizontal derivatives of V in this
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way

agv‘;P) . :L”i_o ,,:nm ,,{i C. a%,,;.(P)

ek ia e ,g;ncnmﬂ*-ﬂ(—) G110

We form these equations for any node at M. Imagine that there are just
as many equations as there ore coefficients Com. Then, hopefully, the
Com could be evaluated from them. However, we do not propose to de this.

Insteod we propose to add equations for the remaining nodal parometers,

i.e.
ove) . Eatnrn) &
or ° 2 mmt 2 Com Hum(P)
*W(P) . & -ne1) aHnm(pg
Frdy nz'; P ;nc""‘
N ; (3.112)
M = -(nH) QHnm P)
IraA ,;, rem*2 Z Com —ox
arv(p) | N (ns1) _3*Ham (P)
drdyd) ,{: Rt ME.;“C,,,,. dg A
In this way, we will ensure that the potential is reasonably harmonic

outside of I, compatible with the field within the shell, ond tending to

Zero Qgs r—o .

Remarks | to 3 given acbove under (3) ocpply mutatis mutondis to the

present situation,
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3.8 Local data deficiencies.

It may hoppen thot data are abundant and redundant in some areas while
in others they are sparse and deficient. Lack of sufficient data in
local areas can cause rank deficiencies or near singularities of the
normal equations. To illustrate our point, consider Dirichlet’s problem

for the exterior of the unit circle:

AV (rg) = O ; r>1
Vitg): fly) (3.113)
Virg)=0(legr); r— @

Suppose that element partition and distribution of data are as shown in
figure 3.14.

S~—]

Figure 3.14. Distribution of data leading to

singulorities of the normal equations.

Infinite elements are used for the outer zone. It is seen that data are
missing or def, “ant in 3 of the 8 intervals at the circumference of the

unit circle. It follows that a cubic spline function s(¢) approximating

LA Sl Perad -
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f(¢) in the least squores sense is undetermined. Hence the contribution
of the measurements to the normal equations will have a rank smaller
than in the case of sufficient dota. The addition of the contribution of
the field to the normal equations does not remedy the situation. The
field contribution merely serves to ensure (opproximate) harmonicity in
the exterior region r > |. If the boundory dota are undetermined in !

Dirichlet’s problem, the whole field will be undetermined.

Remark: Only to freshmen of adjustment courses it may oppeor poradoxical
that a rank deficiency occurs when the number of observations exceeds
the number of unknowns. Thirk of a network which may be rigid ond stable

in some areas and poorly determined in others.

There are at least two ways to remedy the rank deficiencies due to
ack of data in some areas. (1) The elements may be chosen larger there.
(2) A third contribution to the normals may be calculated which results
from the square of a certain curvature norm applied to the spline s(y)

opproximating f(p).

Approach (1) is not too strongly recommended. It moy couse o loss
of regularity in the element partition. As a consequence the computer
programs could become more involved.

Approach (2) is related to least squares collocation using

e

splines. We take the finite element representation of V(i, ¢)

vitg)s 2 ZV ;S (1.9) (3.114)

The index set L comprises the nodes situated on the circumference of the

unit circle. We toke the second derivative

LA/ va : S(1.9)

dg* el dg? (3.115)
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and consider the integral
yand
4 =
- E / LZ; Zvu s 5(4 9)} ply)de (3.116)
o
Here p(¢) is o weight function which can be token p(¢) = |. It moy also

be taken positive in areas of poor data and zero in areas of sufficient

‘( dota. Taking the variation of (3.116) with respect to Vy vields, very

2 much in the some way as outlined in section 3.3.2., a third contribution

to the normols. Spaorsity of the normals will not be impaired in any way.
The method readily generclizes to 3 dimensions. The second

derivative with respect to ¢ may be replaced by the surface Laplacean

thereby.

T ne——— S g i ™ .
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4. Estimation of computation time

4 1. Nested dissection and Helmert blocking

Our normal equations can be grouped according to nodes. If d denotes the
dimensions, i.e. d =1, 2 or 3 and if d-cubics are used, then for each
node there are 29 rows and 29 columns corresponding to the 29 para-
meters per node. During any step in reordering or reducing the normal
equations the 29 equations for one node wil! always be lumped together.
We may view the system as composed of 29x29 submatrices which could be
called generclized coefficients. Elimination is then carried out using
these generolized coefficients instead of conventiona!l scalers.

In the original normals, two nodes are coupled by nonzero
off-diagonal coefficients if there is a finite element on whose boundary
both nodes are located. Hence the system is sparse. During elimination
the coupling increases due to fill-in. If a node is eliminated al!l its
neighboring nodes which are not _vet eliminated become coupled. The whole
idea of sparse eliminction is to renumber the nodes in o way that
fill-in is effectively kept down. We shall use a technique which is a
combination of nested dissection and Helmert blocking. The philosophy
behind this procedure was discussed in great detail in Meiss! (1988),
sections 3.5.4 -5, Here we shall outline it on hand of a two dimensional

problem with element partition shown in figure 4.1.

AT

a4

Figure 4.1 Element partition serving the outline of

nested dissection in conjunction with Helmert blocking
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Mind that we work in the plone polar coordincte system. Hence the region
of figure 4.1 is actuclly a circular ring, the left and right boundory
line, and the nodes located on them are to be identified. We first
describe the block design in a bottom up fashion. At the first stoge, we
consider 8 blocks. Each one is formed out of 2 adjacent squares located
at the bottom level. Such a block looks as shown in an enlarged way in
figure 4.2. We imagine the normals formed for the two simple quads

composing the block, ond the normals added. We eliminate from them the

node indicted by a circle in figure 4.2.

T

Fig. 4.2. First stage block

We call this the inner node of this block. The other nodes (indicated by
crosses) are called junction nodes. We obtain a partially reduced system
of S junction nodes.

At the second stoge we enlarge the blocks of stage one by adding
two adjacent squares of the next higher layer. The block looks as shown

in figure 4.3. There are still 8 blocks.

Figure 4.3. Second stage block %
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Each block ogain shows one inner node. However, this time there are 7
junction nodes. The normal equations for such a node are obtained by
adding the partially reduced normals of stage | and the normals for the
upper squares. After eliminction of the inner node, we obtain a
partially reduced system for the 7 junction nodes.

At stage 3 we adjoin to the block of the previous stage one
compound element of the third layer. We obtain 8 blocks as shown in

figure 4.4,

X )L

Figure 4.4. Third stage block

The normols ore formed by odding the partially reduced normals of stage
2 and the normals for the compound upper quad. The inner node is
eliminated. '

At stage 4 we join two adjocent blocks of the previous stage and

eliminate the 4 inner nodes. Confer figure 4.5. The number of blocks is

4 in this stage.




Figure 4.5. Fourth stage block

At stage S we adjoin to the previous block the compound elements of the
, upper layer. We obtain blocks as shown in figure 4.6. The scale of this
figure is now the same as that of figure 4.1. The number of blocks is

still 4.

NE_ AL NL. NZ
ATIANTINTATAN

Figure 4.6. Fifth stage block

At stage 6 we lump two adjacent blocks of stage 5. See figure 4.7.
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{ %
Figure 4.7. Sixth stage block

At stage 7 we do a similor thing; confer figure 4.8

I B

N

Figure 4.8. Seventh stage block

Racall .that the nodes of the two outer boundaries are actually

identical. In the final ond 8-th stoge we eliminate just these nodes.

! See figure 4.9
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Figure 4.9. Eights stage block

The Helmert blocking procedure is, as we feel, best understood, if it is
described in the above bottom up fashion. In order to analyse various
block designs, however, in particular block design for 3-dimensional
problems, we prefer o top down faoshion, which we briefly outline for the
above example.

At stage 8 we slice the spherical ring by a dissecting line. Inner
nodes are those located at this line. The dissecting line is indicated
by aon arrow in figure 4.9.

At stage 7 we dissect the block again (arrow in figure 4.8) and we
repeat this ot stage 6. Inner nodes are still those nodes located at the
dissecting line. At stoge 5 the dissecting line is horizontal (figure
4.6). Here we discover the rule which will be gemeral emough for all our
element portitions:

Rule for identifying inner nodes and junction nodes: Inner nodes

are those nodes located at the dissecting line which have not been inner
nodes before. (In 3 dimensions we deal with dissecting surfaces rather
than lines). Junction nodes are inner nodes of the next higher stage
together with junction nodes of the next higher stage located in the
block under consideration.

The dissecting lines of the stages 1-4 are easily recognized from

figures 4.2 through 4.5 (arrows).

T
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4.2 Global solution.

We consider a finite element partition which allows to mode! the details
of the field near the surface with about the same resolution as «a
conventional surface layer or collocation solution based on 1°x {° block
overages of grovity anomalies.

The dimension is 3 ond we use tricubics. This implies that there
are 4 parameters available at each node which are responsible for the
horizontal variation of V in the vicinity of this node. Hence the
element size near the surface must be chosen os 2°x 2°. Mind that the
number of blocks is the same as the number of nodes. Consequently there
are 4 parameters available to mode! the horizonta!l varigtion of V in a
block. It follows that the averages over gravity cnomalies in the four
1°x 1° subblocks can be matched exact!y. Our surface of computation will
be a sphere. It may be imagined as a sphere siight!y below the earths
surface. The computational effort of solving the normals is unaffected
by the use of a more complicated reference surface. Only the formation
of the normals takes longer. Asymptotically, i.e. for very large
systems, formation is negligible in comparison to solution By assuming
a concentric sphere with an appropriately lorger radius we obtain o
sphericai shel!. Qur element partition refers to this shell It is
specified in figure 4.10Ca),(b) and in tables 4.1 to 4 3.

zone block size Number of Number of

from to fatit. fongit. blocks aloang blocks in
(degr. latit.) (degrees) a parallel zone
0 72 2 188 | 6480
72 84 69 360
84 99 6 18 20 60

e o P T T T o T L T T Py

Toble 4 { Element partition in first (bottom)

layer as wel! as in second layer

L e e = o
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Element partition for global solution
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Figure 4.18(a)
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Figure 4.18(b). Element partition for global solution.

Detgiled view of area near the pole

The tables apply to the northern hemisphere. The partition for the
southern hemisphere follows by symmetry. In the bottom layer there cre
13808 blocks over the whole sphere. Note that the areo of the sphere
divided by the area of a 2°x 2° equatorial block gives about 18308.

Let us pause for a moment and reflect on the computational effort

associated with o surface layer solution based on 2°x2° blocks. (Recall
that only 1°x1° blocks would be about eguivalent to our finite element
treatment). We are dealing with a system of 13808 unknowns. The unknowns
ore the densities for the blocks. To solve a linear symmetric system of

i unknowns by a direct elimination method requires about
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-3
’ 56— 4.1

elementary steps. (Confer appendix A, equation (A.6)). One elementory

step comprises a multiplication followed by an addition. We arrive at

3
13.___.3600 : 4.38 EM (4.2)

steps. Assuming o computer that can perform 500,000 steps per second

(OSU has such a computer at the present time), we estimate a total
effort of

243 hours CPU time (4.3

If the blocks are chosen 1°x 1° the number of blocks multiplies by 4.
Hence the estimates of (4.3) multiplies by 4° = 84 giving about

15,000 hours CPU time (4.4

We return to the finite element partition. The experience gained from
the computer experiments documented in chapter 6 ond dealing with the
two dimensional Stokes problem, persuades us to assume two layers of
elements of the size shown in table 4.1. At the third layer blocks are
fused, mostly 9 into one. Table 4.2 shows the block size for the third
layer. (Cf. again figure 4.18Ca), (b))

zone block size No. of blocks No. of blocks
from to lat. long. along a in zone

(degr. latit.) (degrees) parallel

-
= ==== _— S===

0 72 6 6 62 720
12 84 ¥ I8 20 40
84 g0 6 99 4 4

Toble 4.2. Element partition in third layer
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At the fourth layer the same partition is used. At the f;fth layer we

fuse again; table 4.3 shows how.

zone block size No. of blocks No. of blocks
from to lat. long. along a in zone

(degr. latit.) (degrees) paral lel

2 12 18 18 20 80
72 84 12 99 4 4
84 g0 6 360 ! !

Table 4.3. Element partition in fourth (upper) layer

Within the main zone -72° to +72° the basic building block is a 18°x 18°

configuration. We call it a 6™-stage block. The meaning of this name
will become clear later on. The face of such a 6™-stage block shows a
pattern of nodes as depicted in figure 4.11. We count 46 nodes on this

face, and 8 along a side line.

In the following, we assume a blocking strategy for the formation
and solution of the normals as outlined in the previous section. The
normals result from the contribution of the field and of the
observations. Confer section 3.3. It is importont that the observations
are local. Any observation must only involve points situated in one and
the same element. The contribution of the fiald in the outer zone is
assumed to be taken into account by finite elements of infinite size.
Confer section 3.8. The partition is that one shown for the last inner

layer in table 4.3.

H
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Figure 4.11. Pattern of node at a lateral

face of a stage 6-block
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Figure 4.12. Blocking scheme for global solution (incomplete)
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The blocking will be hierarchical. Block boundaries will‘oluays be
composed of alement boundories. We proceed to describe the design ond to
estimate the computational effort in a top down monner, starting at the
last stage.

At the last stoge, which is stage 13, there are only inner nodes.
We aossume that they are comprised of all nodes situated in the
equatorial plane. See figure 4.12(13). Figure 4.11. shows the pattern of
nodes which repeats itself 20 times along the equator. Hence the number

of nodes is
i = 20%46 - 20x%8 = 769

The corresponding system of paortially reduced normal equations has 8%i
equations because we have 8 parameters per node. In agreement with

equation (4.1) the computational effort in steps is

3
.(9_6'-)_ . 3.75E10

tronslated into CPU time (ossuming 500,000 steps/sec) this gives
CPU time = 20.8 hours [(stage 13] (4.5

At the next lower stage, i.e. stage 12, we have 2 blocks, the northern
and the southern hemisphere. We cut off the polar caps at latitudes 84
degrees (cf. figure 4.12(12)). We see that for one block

i = 248
whereas
j = 760

from the previous stage. According to equation (A 5) of oppendix A the

computational effert to eliminate n interior equations in the presence
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of m junction equations is

3

n nm(nrm)

In our case n = 248%8, m = 760%8. Hence the effort in steps is i
5 4
o, Glirg))es 4.7 !
6 A :

Translated into computer time, ond multiplied by the number of blocks
‘ (=2), this gives

CPU time = 55.5 hours [stage 12] (4.8

We proceed to the next lower stage, i.e. stage I!. We are still dealing
with 2 blocks. Each block is divided into two parts by the Greenwich

meridion. Keeping figure 4.12(11) in mind we count in one block
i = 8%46 + 2x34 - 12x8 = 349

interior nodes (along the dividing meridian) aond
j =768 + 248 = 1008

junction nodes (at ¢ = 0°, +84°). The CPU for both blocks is estimated
ot

CPU time = 135.1 hours  [stage 113 (4.9

At the next lower stage, which is stage 18, we are dealing with 4

identical blocks. Cf. figure 4.12(18). Each one comprises a quarter of

the sphere. We subdivide each block by the central meridian. For one !

such block we have

4%46 + 34 - 6%8 = 170
10%46 + 2%(4%46 + 34) + 2»70 - 22x8 = 860

T
—_.
n
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We obtain a total CPU for this stage as
i CPU time = 86.6 hours (stage 18] (4.19

At the S-th stage we have 8 blocks corresponding to the 8 octants. We
cut off the region near the pole by dissecting along the surface
g = :72° See figure 4.12(3). We have

]

S*46 - 6%8 = 182
I3%46 + 2%34 + 70 - !6x8 = 608

| J
we obtain

CPU time = 101.8 hours [stoge 9] (4.18q)

From now on we describe the details only for the area bounded by the
latitudes +72°. The portions enclosed by latitudes 72°$ff$ 84°
! =703 ¢ 3 -84°will be treated summarily later on.
At stoge 8 we cut the octaont (truncated at @ = £72°) into 5 slices
as shown in figure 4.12(8). The meridians are eliminated in a sequence

implied by the figure. The effort results from the following table 4.4

o o e o e e P e o e S e e T o e e e e o =

R -

Table 4.4. Computational effort
for the 4 phoses of stage 8

Summing for this stage we obtain 1

CPU time = 245.8 hours [stoge 8] .
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At stage 7 we have 40 blocks in the shope of slices as shown in figure
4 12(7). Each slice is split into 4 blocks. The elimination of the
dividing lines proceeds in o sequence as shown in figure 4.12(7). The

effort results from the following table 4.5

1ttt + 4 -+ -4+ -5 5

Table 4.5. Computational effort
for the 3 phases of stage 7

We obtain for this stoge a

CPU time = 46.8 hours [(stage 7] (4.12)

At stage 6 we are dealing with 168 18°x18° blocks. We split one block

into 2 parts by a spherical surface between the 3rd and 4th layer.

Confer figure 4.12(6). We have for one block

i = 4
4%46 - 4%8 = 152

J
The resulting CPU for all 160 blocks is

CPU time = 2.2 hours [stage 6] (4.13)

We ignore the upper blocks in the sequel. Their contribution is
margina!l.

At stoge 5 the number of essential blocks is still 160. We
decompose anyone of them into 3 subblocks of size 6 degrees by 18
degrees. Cf. figure 4.12(5). There are two phases, and each of them has

i =26
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whereas

4%38 ~ 4x5 + 2 = 134
2%38 + 2%27 - 4x5 = 110

1]
]

J
i

"

The effort is

CPU time

4]

21.8 hours [stoge 5] (4.14)

At stage 4 we have 488 blocks. (Figure 4.12(4)). Each one is subdivided

into three 6°x 8° blocks. Again there are 2 phases:

i =8

j = 2%¥27 + 2%16 - 4x%5 = 66

j = 2%38 + 2#18 - 4x5 = 88

CPU time = 5.4 hours [stage 41 (4.15

At stage 3 the number of blocks is 1448. (Figure 4.12(3)). We eliminate
the 4 nodes at the lower faca of the upper subblock. Consequently we

have for one block:

i =4
Jj = 4x16 - 4x5 = 44
CPU time = 1.7 hours (stage 31 ' (4 .16

The upper portion cut off in this way does not have any interior nodes
ond is therefore ignored.
At stage 2 (see figure 4.12(2)) we eliminate the 4 nodes situated

below those elimingted in the previous stoge:

=4
J = 4%12 - 4x3 + 4 = 409
. CPU time = 1.5 hours [stage 2] 4.1

At the first stoge the 4 inner nodes at the bottom of each of the 1448
blocks are eliminated (see figure 4.12¢1)1)




4
48 - 4x2 + 4 = 28

!

J

CPU time = 0.7 hours (stage 1] 418
We now return to the chips of the octants cut off in stage 9. They are
located between 72 and :84 degrees of latitudes. Their structure s

best seen from figure 4.18(b). Table 4.6 summorizes the elimination

stages necessary to decompose these blocks.

Stage Dissecting surface i j No. blocks CPU
8’ spherical between 4 304 8 0.4
3-rd ond 4~th lgoyerV
7 A= const., 16 264 8 |.4
producing 5 slices
16 132 8 0.4
16 176 0.6
(6 132 8 9.4
6 g = :78° 6 8! 49 9.2
5’ as in stage 3% 4 44 89 0.1
47 as in stage 2 4 49 80 g.t :
3’ as in stage ! 4 28 80 0.9 ;
2 =3.6

1) Upper portion ignored in the sequel
2) blocks of stoge S5’ and 3 ore identical. They ore

6°x6° blocks involving lavers 1,2,3.

Table 4.6. Complementary stages for regions at high latitudes

Hence we obtain
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CPU time = 3.6 hours (stages 8‘ to 3°]
The total CPU is obtoined by summing over al! stcges.
Totai CPU time = 729 hours (4 19

Remork: We hove been somewhat wastefui by aliowing mony elements of
small widih (6 degrees iongitude) ot lat:tudes ¢~ +84 One could at the
lower iayers imcgine an intermediate ring of elements between 84 aond 86
degrees lotitudes whereby the longitudinai width wouid be 18 degrees.
Tris would probabiy reduce the total CPU time to about 600 hours.

In ony cose it turns out that the problem is not managable on a
computer doing only half o million steps per second. However there are
foster computers. The ILLIAC IV is described in Avila et.al. (1878) os a
machine that has 64 processors, each of a speed comparable to that one
assumed above Al!l processors execute the same instruction at a time,
but each one operctes on o seporate data stream. Data can be exchanged
between processors (a subset of the processors can be disabled under
program control) Such a machine appears to be well suited to cut down
the CPU time by a factor which may approach 64. The elimination
procedure outlined above can be viewed as a procedure eliminating nodes,
whereby each node contributes 8 porameters to the system. We may thus
view our |inear system as one hoving as many unknowns as there are
nodes, however each unknown represents actuaily a subvector of 8
elements. From the viewpoint of eliminating nodes, an elementary
operation is thus o multiplication of two 8x8 matrices followed by an
oddition. There should be a way to organize these operations such that
all 64 processors of the ILLIAC IV are busy all the time.

It appears, aofter all, that a global solution is feasible if one

of the worlds best computers is availoble. However, I consider it
doubtful that such a computational adventure will be undertcken in the

next future. Fortunately enough there is another bonus available in

physical geodesy, as wel!l as in other disciplines, which allows us to

calculote a detailed and good solution in a local orea of interest
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without being forced to calculote such a detoiled solution everywhere.
The effect which we are going to exploit, and which has been exploited
o lot in the past, is called "the remote zonme effect”. It is called, by

the way, 'St. Venant’s" principle in elasticity theory.

4.3. The remote zone effect.

There is not much need to elaoborate on it ot length. Everybody knous
that the details of the field in one crea have little correlaotion with
the details in remote areas. Put it in other words, if the field is
changed in on area e.g. by changing the mass distribution in this areq,
the high frequent features in remote areas remain proctically unchanged.
In applicotions of Stokes and Vening Meinesz formulaos this effect is
utilized in o way, that detciled data are only processed in a fairly
small area around the point of interest. The remote zone effect can also
be exploited in coﬁjunction with other methods, e.g. the surface layer
method, the collocation method and, of course, the finite element
method. We shal! consider two configurotions. The first one is o strip
in which o detailed geoid is sought. The second one is a local region,

which for simplicity will be taken as rectongular!y shoped.

4 4 Detailed solution in o strip.

Consider o portition at ground level as shown in figure 4.13(a). Assume
that this pattern extends around the globe, and that the central line
corresponds to the equator. The size of the smallest squares is assumed
to be 2°x 2°. The partitioning of the space outside the surface
(assumed sphorical) is demonstrated in fig. 4. 13(b). The size of the
elements increases as we go away from the surface. The outer zone is
assumed to be partitioned into specially designad elements which share

two more nodes at the north- and south-pole See also fig. 4.14.

—

[RNOUNSIUI S




- 182 -
-
i .
A — A
Figure 4.13Ca). Partition at ground level of strip

Figure 4.13(b). Partition of vertical cross

section AA’ as indicated in figure 4.12(a).
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Figure 4.14. Element partition for solution

in equatorial strip

The potential at the two nodes at north- and south-pole will be assumed
‘ to be known. Only o very much smoothed version of the potential is

needed there. Mence these nodes wil! not contribute to the
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computational effort.
The idea is to get o detailed field in the vicinity of the nodes

located ot a vertical plone passing through the axis of the strip.
At the final stage (stage 18), we eliminate al!l nodes located at
the main profiles. There are 20 such profiles, each having 6@ nodes. We

obtain a system which is structured as shown in figure 4.15

/

Figure 4.15. Cyclic block banded structure of mormal

equations at the lost stage of the strip solution.
We are dealing with a cyclically blockbanded system. There are n = 20
diagonal blocks. The size of each block, denoted m, results from the 60
nodes at one profile, i.e. m = 6B%8 = 488. The effect to triangularize

such o system omounts approximately to

%nmS (4.20)

steps. Under our usual assumptions the resulting CPU time is
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! CPU time = 3.28 hours (stage 101 (4.21)

At the next lower stage, which is stage 9, we are dealing with 28

blocks. We cut each into two parts by a spherical surface indicated in
figure 4.13(b) by o horizontal arrow lobeled 9. We have n = 28 blocks,

each one having i = 14, j = 2#%68 = 120. The resulting effort amounts to
.a e, i‘
n [_‘_+ L“J)}é 4 22) :
2
|
E steps. The
1 !

CPU time = 0.64 hours {stage 9] (4.23) i

No further effort is required to deal with the upper part cut off at !
stage 9. There are no interior nodes left in it.

At the next stage we cut off two portions ot the outside of any
block by considering two vertical cones (surfaces of ¢ = +12° and
indicoted by vertical arrows labeled 8 in figure 4.13(b)). We have ‘
n = 20 (nhumber of blocks), i = 12, j = 2%54 = 108. We get

CPU-time = B.44 hours (stage 8] (4.24

From now on (stoge 7) we deal with n = 20 blocks, each one having o

length of 18° and a profile as shown in figure 4.16

7 =

Figure 4.16. Vertical block-profile at stage 7.
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We cut off the upper level by a spherical surface indicated by an arrow

labeled 7 in figure 4.16. We have i =6, j = 2%40 + 2¢!1 = 182. Hence
CPU-time = 8.19 hours (stage 7] (4.25

At stage 6 we cut each of the 20 blocks into 3 parts by 2 plones
vertical to the ground level ond the axis. There cre two steps, each one
having i = 26. The number of junction nodes is j = 79 oand j = 78

| respectively.
CPU-time = 1 .14 hours (stoge 6] (4.26)

] At stage S we are dealing with n = 6@ blocks. We bisect by a vertical
' axial plane. See the vertical arrow marked S5 in figure 4.16. We count
i =6, j =2%35 = 78. The number of blocks is n = 68. Hence

i CPU time = 8.27 hours (stage 51 (4.260)

At stoge 4 we remove the lateral portion of each of the 120 blocks. See
the orrows labeled 4 in figure 4.16. We find i = 6, j = 2%20 + 6 = 46

CPU time = 8.25 hours (stage 4] (4.27)

The profile of a stage 3 block looks as shown in figure 4.17. The depth
of such a block is 6 degrees of longitude. Hence the horicontal cross

section is squore shaped. We are still dealing with 120 blocks. At ecch

of the subsequent 3 stoges we cut by o spherical surface. See the arrows

labeled 3,2,1 in figure 4.17.

3 =
- 2=~
]

Figure 4.17. Vertical block-profile at stage 3
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At stage 3 we have: i = 4, | = 4%14 - 4x4 = 4Q

CPU-time = B.12 hours {stage 3] (4.28)
At stage 2 we have: i = 4, j = 4%12 - 4x3 = 36

CPU-time = B.10 hours (stage 2] (4.29
At staoge | we have: i =4, j = 4x8 - 4x3 = 20

CPU-time = 8.93 hours [stage 11 (4.3

The total CPU time is

Total CPU-time = 6.46 hours €4 .31

4.5. Rectangulor region.

Consider a region of interest covering an area of 32°x 64° (the
conterminous United Staotes are contained in such a region). Augment this
region by adding layers of succesively larger elements to account for
the remote zone effect. The element design at ground level is seen from
figure 4.18. Note that the element size at surface level is now {°x 1°.
The vertical design is based on 4 layers of elements. The lower
two layers follow the pattern of figure 4.18. At the third layer we fuse
4 blocks into one, ond we do the same ot the fourth layer. The basic
buiiding block of our element design is thus a block, which we call
S-stage block. The element portition at one of its four vertical faces

is shown in figure 4.19 (a). There are 25 nodes on o face and 7 nodes at

a vertical edge. The corresponding blocks for the ougmented zones are
shown in figure 4.18 (b)), (e).

A e
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Figure 4.18. Element partition at

ground level of rectongular region

{a) (b) ()

Figure 4.19. Element portition at vertical block

faces in solution for rectangular region.
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At the final stage (stage 12) we imagine o bisecting vertical plane
passing through the central meridion. See the arrow labeled 12 in figure

4. 18. We count

i = 8%25 - Tx7 + 2x{3 - 2x5 + 2x6 - 2x3 = {73

Hence

CPU time = 8.25 hours (stage 12] (4.32)
At stage 11 we split along the central parcllel. Accordingly

i = 8%25 - 8%7 + 1#13 - 5 + %6 - 3 = 155
wher eas

173

J
There a two blocks

CPU time = 2.85 hours [(stage 111 (4.33

At stage 10 we have 4 blocks. Any of them is split into two subblocks

along its central meridion:

4%25 - 4x7 + (%13 - 1x5 + {6 - {%3 = 83
12%25 = {1%7 + 2x8 + 223 = 245

J
CPU time = 3.90 hours [stage 18] (4.30

At stage 9 we have 8 blocks. We split by parallels. There are 2 types of

blocks. For four blocks we have

4%25 - Sx7 = 65
12%25 ~ {{%7 + 228 + 2#3 = 245

.
n

CPU time = 2.86 hours

0 Oaevion, R Sy e T b g
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For four blocks we have

i = 425 -~ 4x7 + %8 + {3 = 83
J = 8%25 - Tx] + 2#8 + 2%3 = {73
CPU time = 2.20 hours
Summing for this stage we get
CPU time = 5.06 hours (stage 91 (4.3

At stage 8 we split again by meridians. See table 4.7

No. of blocks i J CPU (hours)
4 23 216 0.88
4 47 173 1.84
4 29 209 0.83
4 47 137 8.69
2_ = 3.44 hours

Table 4.7. Contribution of various

block types ot stage 8

We see
CPU time = 3.44 hours [stage 83 (4.36)

In the following stages we ignore the boundary layers. Our estimation
procedure will give an upper bound on the CPU.

At stoge 7 we assume 32 blocks of size 8°x 8°. Splitting in half
means i = 289, j = {44

CPU time = 3.32 hours (stoge 7] (4.3D

At stoge 6 we have 64 blocks, i = {1, j = 108
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CPU time = {.29 hours (stage 6] (4.38

At stage 5 we have 128 blocks of size 4°x 4° . We remove the upper layer:

=1, j =72

CPU time = 9.10 hours (staoge 53] (4.39

At stage 4 we have still 128 blocks. We bisect by o vertical plane: i =
18, j = 4%2! - 45 + | = 65

CPU time = 0.89 hours [stoge 4] (4,40
At stage 3 we bisect the 256 blocks once more: i = 3,
j = 2%16 + 2x8 = 48

CPU time = 8.27 hours [stage 31 (4.41)
Now we have 512 blocks of size 2°x 2°. We remove the upper halt: i =1,
j = 4«8 = 32

CPU time = 2.88 hours {stage 2] (4.42)
At stoge | we remove the two lowest nodes at the central axis of a
block: i =2, j = 4%9-4x3 + | = 2§

CPU time = .18 hours (stoge !] (4.43)

Summing up we obtain:
Total CPU time = 21.55 hours (4.49

This is still quite large. On the other hand, if one owns a computer,

such computation times are not unrealistic.

4 6. Further effort to cut down the computation time.

Examining the above models, in particulor the global one and the

rectongular one, one realizes that most of the computation time is spent

P
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at the higher stages, not counting the final stage. The lorge
computation time is partly due to the lorge number of junction nodes
encountered at these critical stoges.

There appeors to be a possibility to further cut down on the
computational effort by more sophisticated use of the remote zone effect
(St. Venonts principle). Let us outline the procedure on hand of our
last example.

Suppose that we first attempt a strip solution, but one with an

insufficient number of elements at the lateral and upper part of the
strip. To be specific, suppose that we deal with the strip along the
central paraliel in figure 4.18 ond thot we use an element partition
shown in figure 4.20Ca) Chorizontal partition at ground level) and
figure 4.20(b)> C(vertical profile).

S =

——
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7 -

-
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5 >
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g =

L >

IR
4 4
- 4
-
1
T

7 -

() (b
Figure 4.20

Element partition for auxiliary strip solution

G o el

(a) horizontal section, (b) vertical section

) At the final stoge (stage 7) we deal with o symmetric block-tridiagonal
| system. In contrast to figure 4.15 it is not cyclical. The effort for n
‘ blocks of size m is gﬂmﬂA In our case n = I6+1 = 17, m = 30%8. (We have

increased n by | in order to approximately account for the contribution
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f’ ot the boundary elements). Hence
CPU time = 8.15 hours [stoge 7] (4.4
At stcge 6 we cut off the upper blocks: i =5, j = 68, number of blocks
= 16
CPU time = .24 hours [(stage 6] (4.46)

At stage 5 we cut into halfes by a vertical plane orthogonal to the

axis: i =22, j = 2%27 + 5 = 59, number of blocks = 16
CPU time = B8.25 hours (stage 5] (4.47)
At stage 4 we remove the upper blocks: i =5, j = 54, number of blocks =
32
CPU time = 8.07 hours (stage 4] (4.48
At stage 3 we remove the lateral elements. We have i = 4, j = 221 + § =

47, number of blocks = 32
CPU time = 8.04 hours [stage 3] (4.49

We have 32 blocks shaped as in figure 4.21

o
R
o’/"

/

Figure 4.21. Block at stage 2

We cut into halfes by o vertical plone along the axis: i =2, j = 39,
number of blocks = 32
‘ CPU time = 8.8! hours (stage 2] (4.59

At stage ! we remove the two remaining inner nodes: i
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number of blocks = 64

CPU time = 8 8! hours (stage 1] (4.50)

Hence

Total CPU-time = 8 57 hours (4.5

It is seen that such a profile can be calculated in about 8.5 hours.

Profiles in meridional directon require about 0.25 hours.

Figure 4.22. Partition of rectangular region after

auxiliary profile solutions have been calculated

We calculate 3 fong and 7 small profiles as shoun in figure 4.22. The

CPU time = 3.72 hours

The potential and its nodal derivatives are not thought to be known

precisely at the axial plane after a profile calculation. However the
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high frequent portion is thought to be known with good accuracy. This
means that in the further treatment of the rectangulor region we may go

along with a smaller number of junction nodes at the vertical planes

along profiles. The number of junction nodes along a profile follows

from figure 4.19 (b). Considering this reduced number, the computation
time for the various stoges of section 4.5 is now reduced as shown in
table 4.8.
| Stage i ] No Py
12 (fingl) 91 ! 0.04
i 75 a1 2 0.36
10 43 123 4 0.51
9 27 123 4 0.29
43 al 4 2.3t
8 i1 96 4 g.06
27 g1 4 9.17
I 107 4 0.28
27 75 4 a.12
7 29 64 22 2.82
) 6 ¥ 66 64 8.51
S (estimoted from eorlier values) < 0.10
4 10 S0 128 8.55
3 (estimated from eoriier values) < 0.27
2 -"- < 0.08
1 -"- <98.10
> <437

Table 4.8. Reduced computational effort for the solution in a

rectanguiar region after the calculation of auxiliary profiles
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We obtain aq

Total CPU time = 8.09 hours

Facit: there is always o way to improve on a previous estimation. We
feel that also the 700 hours for the global model could be cut by the

obove procedure to a froction of 1/3 or better.

S L
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S. A proposal for o numericol solution of the free boundary

value oroblem

5.1, Isoparametric elements.

Isoporametric elements are well known in finite element analysis. Confer
e.g. Strang-Fix (1973), section 3.3. We outline the basic idea on hond
of a two dimensional example. Consider the r, ¢ plane and consider an
element partition as shown in figure 5.1(a). Denote by S (r,¢) the shape
functons, where i refers to the node and j to o specific porameter at

this node (Cf. section 3.2). MHe assume C' continuity of the S (r, 9.

P N

(@) (b)
Figure 5.1

Mapping from straight to curved elements.

Consider now a mapping from the r, ¢ plane of figure 5.1Ca) into the
R, ® plane of figure 5.1(b). The mopping functions are

R=R(r g
d:9(ry)

(5.1)
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The elements get distorted thereby. The distortions shall be locally
smooth. The mapping functions shall be C' continuous. In fact, we
represent them in terms of finitely many parameters by using exactly the

shape functions Sg(r,y)z

R= 2 R.S.(ry)
0 UL
| (5.2)
$ 3> ¢.S.(ry)
g 40Y

It is now the R, ¢ plane of figure 5.1(b) where our problem in terms of a
differential equation of the field ond in terms of observations on this
field is posed. The r,y plone of figure 5.1(a) serves only an auxiliary
purpose during the calculations.

There is Loplace’s equation for the field:

Ay 4 v 4 BV
AV(R @) + -;—aRx *R3R T REget " o 5.3

And there are point measurements involving V(R,$) and its derivatives.
In order to have something specific in mind, assume that the image
of the unit circle r = | in the r, ¢ plane is the (finite eiement
approximation of the) level surface of the reference potential in the
R, ¢ plone. Assume that point gravity cnomalies are prescribed at certain
locations k = 1,2,..., K which are the images of r = |, ¢ = ¢ . Let v

=V, be the normal to the level surface in the R, ¢ plane. Then the

following equations hold (V .. . disturbing potential, 4 ... normal
graovity):
oV 1 ¢
Lo, Ly
AQ, Iv £ v [ReR(19,)

- Ty




JESE G

- 119 -

Qur next problem is to represent the potential in the R,$ plane in terms
of finitely many porameters. Here, o deliberate detour is token. Cne
starts representing the image of V in the r,¢ plane in terms of the

shape functions:

vir,y) = %V‘cj S (r.9) (5.5)

The representation of V(R,$) is then obtained by means of the inverse

functions

r:r(Re): R RD)

) (5.6
¢ :4q(R®): 9 (RD)
Fortunately enough, the inverse functions will never be used explicitely
during the numerical calculations. We obtain
V(R®)+ IV S, (r(R9),y(R9)) 5.7
i . '

Remark: The foct that the same sharne functions S;; are used in order to
represent the transformation and the potential is responsible for the
name "isoparaometric elements”.

We now outline the calculation of the field contribution to the

normals. Inserting the above representation of V(R,¢) into the Loplaocean

(5.3), we obtain

I%S:; My . 1 IS
AV(R®) %Vq [SRE* 58 * msaal] G

The following manipulations serve to circumvent the explicit use of

r(R,$), ¥(R,$) during the subsequent calculations. Let us take the term

S
IR*?

G.9




as an example. It holds that

{-).S'.-.;= S or + 35.:4;_9_1
2R Jdr IR Jy IR

2
Sy ISy [Ar )t %S, dr 3y . Iy [94) 5 1o
IR It (ZTR) * L5739 R b T Tgr (a&)
- ISy r . 35 %y
dr OJR*  Jdy IR
The functions
dSi 95y S¢; -
or dg = art 5.11)

dont require any further treatment becouse the S are simple

expressions inr, ¢, e g. bicubic polynomials which are differentiated

as shown in section 3.1. Of course, gfter differentiation the
substitution r = r(R,$), 9= 9(R,9) has to be imagined but this
substitution will readily be undone during a subsequent change of

variables in the integrals. Only the derivatives of r, ¢ with respect to

R cause trouble. One forms the Jacobian matrix of partials

IR 9R]

o oY J(re) (5.12)
2 r’ .

FPRL) 7

or oY |
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One inverts this matrix:

or  or
9R 99 Py
* J (ry) (5.1
29 9y
JR oP

obtaining in this way the first order partials

L

r o :
¢ 252%’ U (5.14)

3
Py

whereby the substitution r = r(R,®), ¢y= ¢(R,¢) must be imagined, but is

not done explicitely. Denote temporarily

g_g_z e(r.v) 'gg-' f(ryg)
(5.15)
9y 29 .
3% = g (r.yﬂ 2;%" }7(r390
Then
3'r _delry) dr . Jelny) Ie¢
JR* " "or R "oy R
iy e (516
. —g—r"'—")-e(n‘!) * ——-HQ;? g(ry) 5
1
similarly: 2
r f(ny) Ifr |
%fi ] 5:? f(rg) + _;;L;_ﬂ h(rny) (5.17) {
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Hence the second derivotives needed in

1C..
%—%‘{ (5.18) |

are calculated In aon onalogous fashion all quantities needed in

evaluating AV(R,$) con be obtained. One orrives at the following general

expression

AV(R®) - lZ V; 83, (r(R®) g(R.0) =
J

(5.1
D) V; Q,(r(RO), ¢(R )
Y

where the substitution r = r(R,$), 9= ¢(R,d) is not actually carried

out .

We proceed to the integration over the curved element in the

R,% plane:

£ '-;_—[(AV(RW)?'RoLR oo
v g

(5.20
1 2
L /' [ 2 Vip Quy (r(RO). g(R @) | RAR A
a

Toking the variation with respect to the V. one gets (as in section

3.2.2.) the contribution from this quad to the normals os

;i Vi = O (5.21)

vy

with

9 - / ch(r‘(R,¢),ff(RﬁP))'Qi‘,l.,(r(R,o),g(R,é))RdRaLw (5.22
&
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Now comes the announced transformation of parameters of the r,y plane.
The domain is mapped onto the uncurved rectangle in the r, ¢ plane.

DetlJlr,¢)] is the Jacobian determinant of this transformation.

94,y ’faqj(“’) Qu (ry) R(rg)  Det[I(rg)drdy (523
o

Remark: Although the functions Oq(r,y), R(r,¢) readily split into sums
of products of terms F(r)G{(p), the Jacobian DetlJ(r,9)] does not. Hence
the integration procedure is not easily corried out. Numerical

integration may be necessary.

Let us also elaborate on the contribution of the measurements, in our
special case, the gravity onomalies. First we need o representation of

the vector v, i.e. the normal to the leve!l surface

R=* R(1,9)
b=9(19)

(5.24

We may view this os a oarometer representation of the surface. In the

orthonormal system
J 1
€r* 28’ s * R D9 (5.25
the vector tangent to the level surface (curve) has the representation
.
EL
29
(5.26)

¢
Roy

b >
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Hence the orthogonal vector has the representation

¢
I
oR (5.27
5% |
( Making this a unit vector
P
R 22
1 oF
‘ R |2 221.' IR (5.28)
V(acy)*(Raq) T
i Hence
v . 1 [ v 02 _ av ©R s 20)
ov AR\L, [, Op 12 oR "oy T 9P B9 '
V( 9’) *(Rb%)
'} Again
| X, v . or v 3¢
| 9k~ or PR ¥ 3¢ IR
N (5.38
b oV 9V 3r 9V v
od or 9o oy O¢

where the formulas (5.13) are employed once more.

Discussion: Remember that we are presently dealing with o compietely
known isoparametric transformation. The parameters RU,¢LJ ore

prespecified. What is the benafit from such a transformation and what is

the price to be paid?
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An isoporametric transformation opens the way to exotically shaped

reference surfaces. The resulting normal equotions ore sti!l os sparse

as those for the spherical (or ellipsoidal) reference surfaoce Hence the

solution of the normals require no additional effort. A price has to be

paid when the normals are formed. The integration procedure is more

costly with respect to programming effort ond computation time. On the §
other hand, the solution of the normals is asymptotically more time

consuming than the formation. If N is the No. of elements at ground

level, then the formation of normals is an effort of c,N where on the

solution is an effort c,Ng. Here ¢, and ¢; are (nearly) constants.

Reca!l, by the way, that ¢ solution by means of surface layer elements
or collocation requires cN’! It is seen that isoparametric elements

affect the constant factor ¢, but not ¢ .

5.2. Approoching the free boundary value problem of physical geodesy

Isoparametric elements as outlined in the previous section open a door
to approoch the fundamental problem of physical geodesy in a more direct
way than this has been done thus far. Our subsequent presentation will
be expository. Detailed formulas will be given elsewhere.

The fundamental problem of physical geodesy is the simultaneous
determination of the earths figure ond potential from measurements of
the 3~dimensional gravity vector at the earths surface. The historical
opproach to this problem seemingly has been done under the motto: “First
inearize everything in sight and then think about formulating a
meaningful problem”. As already proposed in Meiss! (197!1) we prefer to
formulate a probliem oand then to linearize it. However, we assume that
the unknown surface of the earth is smooth. This means that the terrain
has been smoothed and that the gravity measurements have been corrected

accordingly.
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Assume that a sphere of radius r, situated inr, ¢, A space is the

pre-image of the earths surface under a certain unknowun transformation

R=R(r ¢ A)
b« b(rygd) (5.31)
N A(ry A)

Assume that the measurements g,, g., ... of the 3 dimensional gravity
vector are tcoken ot locations identified by their coorainctes re. =
For P s A inr, 9, A space. The vectors g, themselves are considered to
be represented in o rectongular equatorial system. Assume further, that
the eorths rotation is known so that the rotational part of the
potential can be taken into account by a known reference potential U,
while the unknown disturbing potential V can be assumed harmonic.

The transformation from r,gn A space to R, ¢, A space is now set

up according to equations (5.2) in the previous section as
R » Z Ri. .S.--(T',q./\)
g Y
¢,Z¢dj j“;j(r‘y/\) (5.32)
<

A=A S (ng.A)
&

The Ry, ég, Aq are assumed known for all nodes i except those situated
at the earths surface. We define the index set L in a way that iel
identifies precisely these nodes. Thus Ry, ¢q, Aj are assumed unknown

for ie L. The remaining coefficients R, ¢. Aq, iéL are known and can

le g/
be chosen according to computational convenience. For example they can

establish a transition from spherical surfaces r = const to ellipsoidal

surfaces in the R, ¢, A spacs.
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Next the contribution of the field to the normal equations is

considered. One forms the energy integral
1
E: 2 /1aV(RO.M)1"Reos b dR cb A 5.3
K7

It is now extended over the entire exterior space in R, &, A space
Unknown quantities in this integral are not only the nodal vclues V; but
also Ry, b, Ny, i€ L. Hence variation of E must be performed with
respect to all these quantities. Thereby the usual decomposition of the
domain into the individual elements is employed, and o traonsformation of
the element integrcls bock to r, ¢, A space can be done just as outiined
in the previous section. The resulting normal equations cre |inear with

respect to Vq but nonlinear with respect to Rg, b., A, iel. They are

LJ} I.Jl
of the following form

‘%' gij:i-'j' <ch; Ke. ke) V" : (5.349
The equations are still sparse if considered as linear equations in Vg.

However sparseness olso extends to the nonlinear equations in the
following sense. Any nonzero coefficient g;; ;4 is related to one or more
elements coupling the nodes i and i’. Hence g+ will only involve such
transformation parameters R,,, @,,, A.., kel which belong to these common
elements. In other words, if the nonlinear normal equations are

| inearized, then the resulting equations will have the same sparsity

pattern as the equations of the ear!ier chapters. The only difference is

that ol! nodes iel will have addilional parameters RU' ¢w, i

The contribution to the normals from the assumed gravity

measurements does not pose much difficulty. The observation equations
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cre of the following type

a b 4 x
.g.;{um,w\) R V(R.Q/‘)} = g™ ™

K
2 )
Zlvwen) \/(R,<p,/\)}K c g e G

ol (z) &)
gg{u(fz.@./\) ,vm.w,/\)}'( = 9.+ RY

U is the reference potential, V the disturbing potential The equations

are again linmecr in Vy, but noniineor in R:, &, N iel. The reference
9 j J 7

L‘jl
potential U also gives o contribution due to the unknown location of the

meagsurements, | . e. due to the unknowns RU’ ¢g, Ng;ie L. The residuals
rO, m Y r ¥ are weighted and nonlinear normais are formed. They will

show an analogous sparsity pattern after [inearization.

The normails of field and measurements are added end solved by
Newtons met~od. This method requires precisely that |inearization which
we were talking about above.

Wa shall conclude this cutiine of an intended research project

with the following

Remark: It is mot considered that the use of three-dimensional gravity
mecsurements is very meoningful in the geodetic boundary volue problem
unless additional information on horizontal position is available. Such
information comes either from ground control networks or from space
observations. Hence one shouid attempt to either incorporate this

information (without destroying the sparsity pattern) or to remove the

horizontal degrees of freedom in the unknown mapping from r, ¢, A space
to R, ¢, A spoce.
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6. Computer experiments for 2-dimensional problems

8 | Purpose and scope

The computer experiments to be described in this chopter were designed

to find an answer to the following specific questions.

1) Should the finite element approach be based on the Ritz-, or the
Trefftz-, or on the least squares principle. As we have pointed out in
section 3.3.1. the least squares principle was found to perform best in

the presence of noisy and redundant data.

2) Are cubic poiynomials sufficiently accurate, or should quintic poly-
nomials be used? The question is perhaps posed in an overly simplified
way. One can always account for the lower degree of the cubics by
choosing o smaller element partition. Hence the question shou!d be askaed
as follows. Does it pay off to replace the choice of cubics ond an
adequate element portition by the use of quintics and on element
partition having appropriately larger elements? Quintics look attractive
because they are C* continuous. One can even enforce the Laplaceon to
vanish at the nodes. Nevertheless it was found that the use of cubics is

preferable.

3) Can the attenuation-with-altitude~effect of the potential be
exploited in a way that the size of the elements increases with altitude
fast enough to ensure that the total number of nodes is bounded by o
constant times the number of nodes at the surface. The answer is

affirmative.

4) What is the best way to represent the field in the remote outer space

of the earth? It is believed that specially designed elements of

inifinite size together with approprialely chosen local shapa functions
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(different from cubic polynomials) are the best choice. Confer section

3.6.

5) What is the best ratio between weights applied to the fieid
contribution to the normals and those applied to the contribution from

the geodetic observations?

6) Is there a way to combine in one calculation surface data with

satellite derived spherical harmonics?

Due to the large CPU-times predicted for 3-dimensional calculations it
was decided to conduct the experiments in 2 dimensions. Stoke’s probiem
for the unit circle was solved by meons of finite elements, and for a
set of artificially generated dota. Our version of Stoke’s problem is
formulated as follows. Find a potential V{r,9) in the outer space of the

unit circle such that

(1) V(r o) = O(:—J ; r—> ™ ' 6.1
(2) av=0 ; ro> 1 6.2)
(3) V(r.?)’fg% < f(g); v =1 (6.3)

It is seen that we have eliminated the logarithmic port of the
potential. V may be viewed as a disturbing potential. The reference
potential U may absorb the logarithmic part. The function f(y) must be
free of "circular harmonics® of the zero~th and first degree. (I.e. its

Fourier series must stort with terms in cos 2¢, sin 2¢).

Remark: Obviously the stated problem is most eosily solved by means of

circular harmonics, i.e. by Fourier-analysis. Representing f(y) as

o0
flg) = 2_(c,cos ng +d,sin ngp) (6.3
ns 2
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the solution is cbtoined as
2. 4 )
| V(ry): 2_ 7r (a,cos ng +b,sin ny) (6 3b)
N: 2
with
. _ _Cn __ _Gn (6.3
@n * n-1 bp - n-1

The above continuous version (6.1-3) of Stoke’s problem is replaced by o
discrete one. First, the continuous data f(¢) are replaced by f(g) for
discrete arguments ¢, Secondly, the potential V(r,¢) is replaced by a

finite element representation

4 ZVU Sij(r.9) (6.4
)

Confer sections 3.2. and 3.3.1, in particular equation (3.19). The
element partition is shown in principle in figures 3.6(a)-(b) of section
3.3.2. In all experiments conducted thus far, the arguments ¢, were
assumed equally spaced.

The outer zone was represented in two ways, namely by a ‘circular
harmonics” representation of comparatively low degree (cf. section 3.7,
method labeled (4)), and alternatively by elements of infinite size as
outlined in section 3.6.

The dota f(y,) were generated from an ‘"assumed potential® of the

form

|

f

Neuay . i

vAss(rcf)z Zz -5 {a_ncos neg *b,,Sm nff} |
n 6.5) |

with _°£‘.‘. An |
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The coefficients «n, 3~ were rondomly generated in the interval (-8.5,
+0.5] The maxima! degree N,.,, ond the damping exponent d were varied.
The choice d = | corresponds to Kaulae’s rule of the thumb. (Equal degree

variances of the radial derivative for o wide range 2 € n € No..).

Remcrk: Note that no measurement noise was assumed to be super imposed

upon the dato calculated from the assumed potential.

The procedure described in chapter 3 and section 4.1 yielded the
potential at the nodes of the chosen element portition together with the
nodal derivatives. This "colculaoted potenticl"' was compared with the
ossumed potential (6.5). Statistics of the deviations were calculated
ond tabulated. The calculctions were carried out on the (SU-Computer
Amdah| 470 V/6-I1. In o few coses, a post-analysis of the 0OSU results
was done on a desk-top computer WANG 2208 VP. The potential was then
interpolated into the interior of the finite elements in order to verify
that the approximation was also good there. Also a few orbits of passive
masspoints were numerically integrated for the assumed potential and,
alternatively, for the calculated potential. In both cases a circular

symmetric reference potential of the log r type was superimposed.

6.2. Parameters distinguishing the experiments.

In this section we give o detailed description of the input porameters

characterizing one particular experiment.

IDEGR degree of polynomials in elements of finite size:
3 ... bicubic polynomials

S ... biquintic polynomials
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| ISWINF a switch distinguishing the represzintation of the field In
the remote outer zone r > rg.
I ... circulor harmonics

2 ... elements of infinite size

NLAYER number of successive layers of elements in the circuliar

ring! £ r ¢ Cour

K ITYPECID, I =, ..., NLAYER type of elements in layer number I

1 ... simple quads

2 ... compound quads

NELEM(1D number of elements in layer number | (the lowermost)
layer

HFCT a factor governing the thickness of the various layers

and also responsible for the size of r,,,. Cf. the following

remark.

Remark: From the input porameters NLAYER, ITYPECI); I =1, ..., NLAYER,

'i NELEMC!), HFCT the element partition wos calculated by the following set
;1 of formulas:
NELEMCI) = NELEMCI-ID/ITYPECI-1);, I =2, ..., NLAYER (6.8
DELPHICI) = 2% ar/NELEMCI); I =1, ..., NLAYER (6.7)
RADIUSCI) =1
RADIUSCI)> = RADIUSCI-1)*(! + DELPHICI)*HFCT)

f I=2, ..., NALYER+! (6.8

ATV R W TR # Pralifran - v o b



Thereby we have denoted
NELEM(DD number of elements in layer I
DELPHICID anguiar width of elements in layer I
RADIUSCID inner radius of layer I
outer radius of [ayer I-f
I =1, ..., NLAYER
RADIUSCNLAYER+!) = r .- outer radius of last layer = outer radius
of the circular ring partitiored into eiements of finite

size.

We now continue to describe the input parameters.

NPCTC largest degree of circular harmonics in assumed potential
(dencted N,., in equation (6.5))

DAMP damping factor in the assumed potential (denoted d in
equation (6 .50

NPINST this porameter governs the number of locations at which

data (gravity anomalies) were calculated from the

assumed potential. Remember that the locotions are equally
spaced. NPINST is the number of locartions in an interval
of size DELPHIC!), i.e. in a boundaory segment of a
lowermost finite element ot r = 1. The data ore

arranged there as shown in figure 6.1, It is seen that

the interval ends corresponding to element boundories

are halfways situated between two measurements locations.

k\;~k ST AT e e e e iaiaiona . 2




The total number of fictitious mecsurements is thus
obtained aos NELEM(ID)*NPINST. Recol! that no simulcted

measurement noise was superimposed upon the doto.

VA
. T-QA

Figure 6.1. Arrangement of fictitious measurements in *

a boundary segment of the unit sphere

STKWGT weight applied to the contribution of the measurements
to the normals. (The weight for the field contribution

was assumed with a value equal to 1)

The following 4 parameters opply only to the cose ISWINF = 1|, i.e. to

the representotion of the field inr > r,, by circular harmonics.

NHARM highest degree of circular harmonics in the representation
of the field in the outer zone. This representation

is thus given by

NHARM

Viryg) = ';; { A, cos ny * B,sinng} (6.9

na

e et T B Bt e e
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The calculated values for the unknowns A,, B, should
approximate those of a,, b, in the representation (6 5)

of the assumed potential. The deviations are due to

(1) discretization of data 4
(2) discretization of the field by the finite element
representation

{ (3) NHARM < NPQTC

(4) roundoff error

NPINHA this parometer governs the number of loccotions at which
the finite element representation of the field in the
ring was colloccted with the circular harmonics
representation of equction (6.9) in the outer zone. The
locations are all found at r = rgr. They are equally
spaced. There are NELEM(NLAYER) intervals at r = ro,. !
NPINHA gives the number of locations in one of these
intervals. Their distribution is similar as that shown in
figure 6.1, i.e. the locations are equally spaced and
the interval boundaries were assumed halfuays between
the two adjacent locations. The total number of
points of collocation is thus NELEM(NLAYER)*NPINHA. This
number waos frequently assumed appreciably larger than

2%NHARM - 2, the number of coefficients in (6.9). This

means that we are working with a redundant set of

. i ..

locations at which consictency of the two potentials |

was enforced. Hence remark 3 given in section 3.7 applies

mutatis mutondis (i.e. translated to the method iobeled
(4) in section 3.7). Consistency con only be required
in a least squares sense. Weight assumpltions were

necessary. They are specified by the subsequent 2

weight paorameters.
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HARWG® weight applied to the values of the potential during

collocation at the locations on the circle r = rgf

HARWG! weight applied to the radial derivative of the potential

during collocation. -

Remark: Recall that the weight opplied to the field contribution was
ossumed equal to I,

r
The following 3 parameters apply only to the case of IDEGR = 5, i e. to

the case of biquintics.

N89 This porameter allows to choose between 8
parameters per node and 9 parameters per node. In
case of 8 parameters per node, the Loplacean is
fixed to zero at any node. This gives a linear
relation between the nodal parameters V.., V., Voo

which was used in order to eliminate V .

FLPWGL Because it was observed that the nodal porameters
involving second radial derivatives were rather
poorly determined at r = 1, odditional fictitious
observations of the Laoplaceon were assumed at ol

measurement locations. The appropriate weight was FLPWGL.

FLPWGU This input parameter is analogous to the previous

one, however it applies to r = rg,.,
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6.3. Detailed results for two experiments.

6.3.1. An experiment using comparatively large elements.

The input parameters were specified as follows

IDEGR = 3  [cubics]
ISWINF = 2 [circulor hormonics in outer zonel
' NLAYER = 4  [number of layers]
| ITYPECI) = |1 [simple quads at first layer]
ITYPEC2) = | [simple quads at second layerl
ITYPE(3) = 2 [compound quads ot third loyer])
ITYPEC4) = 2 [compound quads at fourth layer]
NELEMC1) = 32 Cnumber of elements in first layer]
? HFCT = | [(opproximately square shaped elements]
| NPOTC = 128 [highest degree in assumed potentiall
DAMP = 2 [damping foctor in assumed potentiall
NPINST = 8 (8 data points per interval at r = 1]
: STKWGT = S5 ([weight for datal
: NHARM = 8 [highest degree of circulor hormonics in the
;; representation of the field in the outer zonel
‘i NPINHA = 8 [8 collocation points per interval at
. r = Fourd
3 HARWGB = 50 (weight in collocating V at r = rgur ]
r HARWG! = 5 [weigth in collocating V. at r = r,..]
Toble 6.1 illustrates the geometry of the element partition. A pictorial

! representotion is given by our earlier figures 3.6C(0), (b) in section

3.3.2.
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LAYER  TTYPE  NELEM RADIUS DELPHI

! ! 32 1.00000 8.18635
2 I 32 }.18635 8.19635
3 2 16 1.43125 0.3927¢
4 2 8 1.99330 0.78540

for = 3.55884

Table 6.1. Element partition in experiment : L

with comparatively laorge elements

The assumed potential (equation (6.5)) is depicted at ground level
(r = 1) in figure 6.2C¢a). It is seen that the potential does not exceed

the value 0.14. Recall that the assumed potential was used to generate
the discrete set of gravity anomalies. From these data the potential was
calculated bockwards by the finite element method. The calculated
potential at r = | is shown in figure 6.2(b). It is seen that the
irregulorities are somewhat smoothed out. Figure 6.2(c) shows the
difference. Note that the ordinates are now scaled differently. We see
that the relative error is about 2.5X4.

The figure £.3Ca)-(c) describe in a similer way the behaviour of
the radial derivative V. at r = 1. Figures 6.4(a)-(c) are devoted to the
horizontal derivative V4 ot r = 1.

It is obvious that the accuracy in the presently described
experiment is insufficient. In order to obtain an approximation of the
geoid ot the cm level, the finite element calculation should reproduce
cbout 4 correct digits of the disturbing potential V. Presently only 2

digits are correct. We have nevertheless exhibited the results in some

detail because they teil us very instructively what we caon expect
qualitatively from a finite element solution. If the elements are chosen

too lorge, the details of the field can not be properly represented. One

should nevertheless expect that the approximation is good in the low
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frequencies. This is opparently the case and is further illustrated by
figures 6.2(d-e), 6.3(d~e), 6.5 and 6.6.
Figure 6 2(d) shows the assumed field V at r = {, truncated to
circular harmonics of degree n € 32. This low-frequent part of the field
has about the some number of porameters as the trace of the finite
element representation of Vot r = 1. The two graphs 6.2(b) and 6.2(d) }
are visually nearly indistinguishable. Figure 6.2(e) shows the high i
frequent part of the assumed field, composed of circular harmonics of
degree 32 < n £ 128. The two graphs of figures 6.2C(c) and 6.2Ce) are
different, but the magnitude is the same. Figures 6.3(d-e), which should
be compared to figures 6.3(b-¢) suggest thot the same conclusion holds
for the rodial derivative: the finite element solution is about as good
as the assumed field truncated to low-degree harmonics of degree n { 32.

Figure 6.5 shows the superposition of figures 6.3(a) and 6 .3(b).

Figure 6.6 shows the calculoted Loplacean AV at r = 1. (The assumed
Loplacean is zero, of course). The calculated Laplacean is discontinuous
at element boundaries. Hermite bicubics ore only C' continuous. The
groph of AV suggests that the finite element solution achieves a
smoothing by shifting - in o balonced way - positive and negative masses
outward of the earths body. The method automatically regulorizes the

field in this way. The shifting of masses should not be noticable at the

fow frequencies.
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Figure 6.2(a). Assumed potential V at r = { in

experiment using comparatively large elements.
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Figure 6.2(b). Calculated potential V at r =1 in

exper iment using comparatively large elements.
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Figure 8.2Cc). Difference calculated minus assumed

potential V at r = 1| in experiment using comparatively

large elements.
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Figure 6.2(d). The assumed field V ot r = 1| trunceoted to
circular harmonics of degree n { 32. Experiment using

comparatively large elements.
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Figure 6.3(a). Assumed radiql derivative V. ot r = |

in experiment using comparatively large elements.
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Figure 6.3(b). Calculated radicl derivative V. at r

experiment using comparatively large elements.
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Figure 6.3(c). Difference calculated minus assumed

radial derivative V. at r = | in experiment using

comparatively large elements.
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Figure 6.3(d). Radial derivative V. of the assumed field

ot » =1, truncated to circular harmonics of degree n § 32.

Experiment using comparatively large elements.
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Figure 6.3(e). Contribution of circulor harmonics of
degree n > 32 to the radial derivative V. of the assumed

field ot r = 1. Experiment using comporatively large

elements.
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Figure 6.4Ca). Assumed horizontal derivative Vy ot r = |

in experiment using comporatively lorge elements.
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Figure 6.4(b). Calculated horizontal derivative Vy at

r = | in experiment using comparatively large elements.
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Figure 6.4(c). Difference calculated minus assumed
horizontal derivative Vo at r = 1 in experiment using

comparatively large elements.
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r

Figure 6.5. Superposition of assumed and calculated radial
derivative V. at r = | in experiment using comparotively

large elements.
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Y : 2T

Figure 6.6. Calculoted Laplacean AV at r = 1 in

experiment using comparatively large elements.
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In order to put the potential derived from finite elements to o further
test, a number of orbits of passive mass-points was numerically

integrated. A reference potential equal to
1
U(r)= Log — (6.19)

was assumed. If Vi (r,¢) ond V. (r,9) denote the cssumed ond calculated
potential discussed previously, then the total potential used in the

orbit calculations was either

Wiss (ngl = Ulrl + ¢, Vs (ny) 6. 11a)
or

Were (reg) « U(r) + ¢,V (ry) (6.1 1b)
By choosing

C, * 0.0003

an attempt was made to relate the reference potential and the disturbing

potential in o way quantitatively similar to the real earth.

The equation of motion in polar coordinates is

Fooorgr 2 X
s or (6.12)
. .‘
s ro . 4 9w
g+2.r9’-r,_ ”

For mear circular orbits one may represent r and ¢ in the following way:

rs= ro + 4r

g g, t Ay

(6.13)

i ATt
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Thereby the two constants r,, ¢, fulfilil
FoPo = 1 (6.14)

One proceeds to linearize the equation (6 12) obtaining:

. . a ¢
OF - ¢ Ar - 25,09 = SE + o ST (R0, L rag)

Yot

(6.15
Co Vv

N S - —Co N (r.iarq
Ag + 2T Ar " (re+ A1) 9 (5edr g, + 9]

We shall refer to (6.12) as the equation of the "exact orbit® whereas
(6.15) ore the equations of the "differential orbit”.

Either version of the orbital equations was integrated by a high
degree Runge-Kutta-type formula found in Henrici (1962), p. 171. When
the calculated potential was used, ond when the orbit crossed an element
boundary, the step size was temporarily decreased by a factor of /4.

~ Figure 6.7(a) shows the results of an exact orbit calculation. The
orbit passes through all 4 layers of the circular ring subdivided into
elements of finite size. (Cf. figure 3.6(b)). The radial ond angular
deviations between the two solutions based on Wc .. and Was are shown in
figure 6.7(b). The deviation amounts to about 1| pp 300,008. This
corresponds to a 20m-occuracy in the real world.

Figures 6.8(a)-(b) show in o similar way the results for o
differential orbit with respect tor, = 1.1,¢, = 0.99909. .. It is o low
orbit which posses abcut midways through the lowermost layer. We see
that the accuracy is cbout | pp 1,508,000 or 4-5 m.

Remark: The deviations due to differing Ve ans Vg of the orbits (exact

as well as differential) ore neorly linear in ¢, over a fairly wide
range. Hence the assumption ¢, = 8.0003 can be changed by rescaling

figures 6. 7(b) ond 6 8(b) ocppropriately.
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t=13 sec

o

Figure 6.7(a). Exact orbit from exper iment using ;

comparatively large elements. Initicl volues are
() = 1.081, r(@) =0, (@) =8, ¢ (@ = 1.55.

A step size of At = 8.95 seconds was used for the %
calculated potential ond 4t = 8.8125 for the assumed
potential . A value ¢, = 0.8003 was chosen. (Cf.

equations (6.11)).
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Figure 6.7(b). Difference in r (top) ond ¢ (bottom)

from calculated ond assumed potential. Experiment

using comparatively large elements.
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Figure 6.8(a). Radial increment Ar (icp) and angular increment Ay
(bottom) obtained by integrating o differential orbit based on the
assumed potential. Initial values: r(@) = 1.1, F(B) =0, 9(@) =0, ¢ i
(@) = 0.90909. .. A step size of 0.05 sec was used for the calculated
potential, and At = (. 8125 for the assumed potenticl. A value ¢, =
0.0003 was chosen.
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Figure 6.8(b). Difference in Ar (top) and Ay (bottom)
of differential orbits based on calculated and assumed

potential. Experiment using comparatively large elements.
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Remark: Note that orbits in o central force field implied by (6.18) are
not closed. In case of the differential orbit, the angle between

successive pericenters (successive apocenters) is given by (cf. Arnold

(1978), p. 37, problem 2

$: (T x | (616

Translated into time this gives

2 4.9 sec 6.17

&fe

This is in agreement with figure 6.8(a).

We summarize some further results of this experiment in tables 6.2
and 6.3. Table 6.2 lists the magnitude of the nodal parameters and the
magnitude of the deviations between calculated oand assumed field.
Moximal and rms quantities are |isted per level. There are 7 levels of
nodes. A layer of simple quads is bounded by two levels. A layer of
compound quads has one additional level of nodes halfways between the
two bounding levels. Level | corresponds tor =1, level 7 to

F = = 3.55884. ..

i




rms

! 0.126944 0.066857 | 8.50296! ©.198303 | 0.36599! 0.201368
3 0.9002493 ©.001005 | ©.098787 ©.043960 | 0.092146 ©.039320

2 0.078590 0©.841004 | 0.178782 ©.093193 | 0.212148 ©0.113458
0.000258 0.000128 | 0.005483 ©0.002216 | 0.814387 0.005119

= 3 0.049725 ©.025910 | 0.987696 ©.046367 | 0.130977 0.067720
0.000136 0.000055 | ©.0207!5 ©0.008029! | 0.902135 ©.000799

4 0.031793 0.0169990 | 0.845800 0.024350 | 9.975744 ©.043491
0.000084 0.000034 | 2.000101 ©.000054 | 0.000382 0©.000221

S 0.021928 ©.011866 | 0.026655 0.014127 | 9.050927 @.029458
0.090093 ©.000033 | 0.000075 ©.000038 | 8.000256 @.000126

6 0.009372 0.005744
0.000045 ©.008026

(v

.008395 0.004658 | 8.020399 8.014113
.000037 ©.000024 | 0.000612 ©.000418

(o)

(o

003601 0.002040 | 9.011373 ©.007977
.000040 0.000022 | 8.000126 0©.000090

i 7 | 9.095620 0.003345
| 2.000016 0. 000010

[\

Table 6.2

Maximal ond rms values for assumed nodal parameters

(top entry in each field) and for deviations from
calculcted values (bottom entries) at various levels

of nodes. Experiment using comporatively lorge elements.




a - 164 -
i
Table 6.3 compares some of the assumed potential coefficients a,, b,;
n=2 ..., NHARM = 8 with A,, B, obtained by the collocotion procedure
at r = ror.
An Bn
Gn bn
Diff. Diff.
-0.016589 0.051241
-0.016752 9.051579
0.002163 -p.002329
-0.054197 0.041178
-0.055401 0.842326
D.001204 -0.081148
-0.000030 0.015842
0.0808313 8.9819369
-9.900343 -0.803527

(the remaining coefficients are not listed
because the errors are comporable in size

to the coefficients themselves)

Table 6.3
Comparison of assumed (top entries) and calculoted
(middle entries) harmonic coefficients. Experiment

with comparatively lorge elements.
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' . 6.3.2. An experiment using comparatively small elements.

The input porameters were specified as follows

‘ IDEGR
f ISWINF
NLAYER
| ITYPECI)
| ITYPEC2)
3 ITYPEC3)
% ITYPECH
‘ NELEMC1)
K HFCT
NPOTC
DAMP
NPINST
STKWGT
NHARM
NPINHA
HARWGO
- HARWG |

1

N NN — — bW

128

64

32

50

[same as beforel

(same as beforel

[(some as beforel

(saome as beforel

(same as beforel

[(same as beforel

(some as beforel

(increcsed by a factor of 4]
(same as beforel

(decreased by factor 1/2]
[less damping than beforel
[(same as before]

{same as beforel

Lincreased by a factor of 4]
(same as beforel

[(some as beforel

[some as beforel

Table 6.4 and figure 6.9 illustrote the geometry of the element

partition. Note that r,,. results in o smaller value than before.

:
i
i 3
!
{
i
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LAYER  ITYPE NELEM RADIUS DELPHI

{ f 128 |.00000 8.04903

2 ! 128 1.04909 0.284909

3 2 64 | 108858 0.08817

4 2 32 1.20863 8.19635
foor = 1.44595

Table 6.4. Element portition in experiment using

comparatively smal! elements.

We now exhibit without much text the counterports of figures 6.2-6.4,
6.7-6.8 and tables 6.2 and 6.3. These are the figures 6.19-6.14 and the
tables 6.5-6.6.

A

—

Figure 6.9. Element partition for experiment

using comparatively small elements.




- 167 -

2r

1
>

+.9038 ¢t

+.082

+.001 ¢

~.000 - ~ M 2w

-.001 1

-.802 ¢

-.083

l' Figure 6.18. Assumed potential V (tep) at r = | in experiment using
g comparatively small elements. The calculated V is grophically
indistinguishable. The bottom figure shows the enlarged difference

? calculated minus assumed V.
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Figure 6.1!. Assumed radial derivative V. (top) ot r = 1 in experiment
using comparatively small elements. The calculated V. is graphically
nearly indistinguishable The bottom figure shows the enlarged

difference calculated minus ossumed V. at r = 1.
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Figure 6.12. Assumed angular derivative Vo (top) at r = |
in experiment using comparatively small elements. The

calculated Vy, is not shown. The bottom figure shows the

enlarged difference calculated minus assumed Vo ot r = |

R L

.




Figure 6.13Ca). Exact orbit in experiment using
comparatively small elements. Initial values are
rC@) = 1.01, #(8) =0, (@ =0, $@ =115 i
A step size of 0.0125 sec was used. A value

c, = 0.00003 was chosen. (Cf. equations (6.11)).
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Figure 6.13(b). Difference in r (top) ond ¢ (bottom)
of exact orbits obtained from calculaoted and assumed
potential . Experiment using comparatively small

elemants.
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.2098019 1

. 280986 1

.800808

{
1

t=7sec

.980836
.000012
.908916

.000020

.000925

Figure 6.14Ca). Radial increment Ar (top) and anguler
increment Qg (bottom) obtained by integrating a
differential orbit bosed on the assumed potential. Initial
values were r(8) = 1.1, F(8) =0, (@ =290, é(@) =
0.90908. .. A value ¢, = 8.000083 was chosen. Experiment

using comparatively small elements.

o
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Figure 6.14Cb). Difference in Ar (top) and dg (bottom)
of differential orbits based on calculated and assumed

potential. Experiment using comporatively smai! elements.
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Note that the assumed potenticls cre different in the examples described
in the previous and in this subsection. In subsection 6.3.1. we had
NPOTC = 128 coefficients in the assumed potential and o domping factor
of DAMP = 2. In this subsection NPOTC = 64 and DAMP = |  The grodients
of the present potential are about 18 times larger at r = | thon in the
eariier example. For this reason, the constant ¢, of equation (6.1!) was
chosen by a factor of /1@ smalter than before. However, a remark given
in section 6.3 1. carries over, implying that the figures 6.13(b) and
6.14(b) may be rescaled in proportion to any change of c,.

Due to the differences in the assumed potentials the differences
in the results are not only due to the change of the element partition.
Hence the results are not immediately compaored. In the next section a
number of experiments will be described summarily. From this additional
information it moy be concluded, that the transition from NELEM({) = 32
to o value of 128 improves the results by about | digit at r =1,

Figures 6.13 and 6.14 showing the results of the orbit

caleulations demonstrate an accuracy of about | pp 5,000,008 in case of

the exact orbit. This corresponds to |1-2 m. The differential orbit is
good to | pp 300,009,000. This correspond to 2 cm.
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Level V. Ve
max rms max rms max rms

! 0.560348 ©0.214973 | 5.990022 2.260387 | 6.250663 2.255706
0.002427 0. 000882 | 0.046030 ©.016975 | 0 328472 9.153894

2 0.384302 0.171249 {2.3839448 0.797211 | 2.324042 0.834182
.000638 0.000259 | 0.053510 0.019825 | 0.011507 ©.0884792

3 287927 B.143964 | 1.330956 ©0.502973 | 1.334445 8.553725
0.0000834 0.000026 | 9.004152 ©.001534 | 0.005652 ©.001970

4 .243918 0.123493 | 0.853614 ©0.368318 | 0.912405 0.427124
0.0800053 0.000023 | 0.081245 ©.000492 | ©.905634 0.001950

S .208708 ©@.107151 | 0.606866 ©.286809 | 0.696430 0.348634
.000044 0.000018 | 0.000588 ©.000227 | 0.001248 ©0.000473

6 156166 2.082076 | 0.348728 @.184487 | B 458199 8. 24836!
.000031 .000046 | 0.000463 0.000222 | 0.003435 0.001451

7 0.122152 ©.964519 | ©.240178 0 .127450 | 0.340255 0.187136
.000058 0.00003! .000102 0.000052 | 9.000783 ©0.900376

Table 6.5

Maximal and rms values for assumed nodal parameters

(top entry in each field) and for deviations from

calculated values (bottom entries) at various levels

of nodes. Experiment using comparatively smal! elements.

e
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T

An Ba An B.

n a, ba n On b,

Diff. Diff. Diff. Diff.
-0.033504 @.1983139 -9.005873 -0.0826646
2 -0.933585 9 103140 13 -0 006296 -0 827436
0 000021 -0.00200! 0.090423 ©.0007908
-8.166199 8.1268972 0 008536 0.927354
3 -0.166283 @.126977 14 0.918171  9.927769
0.000004 -8.0002eS -0.980635 -0.000414
0.001247 0.077468 -0.081018 9.825269
4 9.001258 8.877477 IS -0.020838 ©.925864
~-0.000003 -0.000009 -0.0080180 -0.000604
-0.035952 -8.058543 -8.913724 -0.01034!
S -0.935958 -B.858558 16 -0.013725 -Q @11124
©.000006 ©.00001S 0.00000! ©9.080783
9.023489 9.972583 -0.007358 -2.008160
6 9.023507 8.872625 17 -0.607605 -0.007283
-0.000017 -0.0200042 0.000247 -0 0928877
~-0.925322 -9.213856 ~-0.019404 -9.915308
7 ~£.025337 -9 913858 18 -0.020553 -~0.014438
9.80001S 0.000083 0.681143 9.002872
0.031356 -0.251497 0.022968 -~9.818957
8 8.831431 -8.0851597 19 0.023800 -~2.020617
~0.00007S 9.000100 -0.000832 0.001660
9.052027 -0.832417 -8.912259 -0.815923
9 0.052222 -0.832523 20 -0.812342 -0.016005
~0.000195 Q. .g0R10s 0.000081 9.000082
0.003373 ©.917371 -0.001372 0.0087838
18 0.003468 0.917520 21  -0.991379 0.0087600
~-0.000087 -0.900149 0.000e06 0.200238
2.81219¢ 9.918735. -0.920856 ©.913256
11 8.812312 9.918955 22 -0.919737 8.011783
~2.008122 -8.000229 -6.081119 0.0201553
0.008715 -0.091960 -0.904177 0.0085744
12 0.000830 -9.202129 23 0.000844 9 208234
~0.000016 0.000169 -0.0085021 -0.802490

Table 6.6

Compaorison of assumed C(top entries) and calculcoted
(middle entries) harmonic coefficients. Exper iment
using comparctively smal! elements.

e e __
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f 5.4. Summary of other experiments.

6.4.1. Experiments using bicubics.

Toble 6.7 lists input parameters ond resulling accuracies for a number

of experiments using bicubics.

Experiment | 2 3 4 S 3] 7 8 g
X ISWINF ot 2 2
- NLAYER 4 4 4 4 4 4 5 4 4
ITYPECH) N E (Y S IR SN B SR
ITYPEC2) A S EY S A S R B
ITYPE(3) 2 2 2 2 2 2 2 2 2
ITYPEC4) 2 2 2 2 2 2 2 2 2
8 ITYPECS) /42
NELEMC1) 32 32 32 32 32 64 64 128 128
HFCT t 1t 1t 187 1
Four 3.56 3.56 3.56 3.56 3.56 2.81 2.72 1.45 1.45
NPOTC 16 32 128 128 128 32 64. 64 128
DAMP R T S 2 I T R
NPINST 8 8 8 8 8 8 8 8 8
3 STKWGT 5 5 5 5 5 25 5 §5 S
NHARM 8 8 8 / 8 / 8 3 3
NPINHA 8 8 8 +/ 8 / 8 8 8
HARWGO 59 S8 S8 / S0 / 58 58 S8 {
HARWG | 5 5 5 / & / 5 5 5§
» (toble continued on next page)
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6.4.2. Experiments using biquintics.

Table 6.8 lists input parameters and resulting accuracies for a number

of experiments using biquintics. The parameters NLAYER (=4), ITYPE(I)

(=12, ITYPE(2) (=1), ITYPE(3) (=20, ITYPE(4) (=2) ore not repeatediy
listed because the indicated values were the same for all experiments
documented in this toble.

Exper iment ! 2 3 4 5

NELEMC1) 32 32 32 32 32

HFCT I 8.75 0.75 I !

Cour 356 2.71 2.7 3.56 3.56

NPOTC 32 {28 128 128 128

DAMP ! 2 ! ! !

NPINST 8 16 16 16 8

STKWGT | I ! | I

NHARM 8 8 8 8 8

NPINHA 8 8 8 8 8

HARWGO 19 19 19 1 19

HARWG ! 25 25 25 25 25

N89 9 g 9 9 8

FLPWGL -3 {1E€-3 1E~3 11E-3 {E-3

FLPWGU 3E-3 tE-4 tE~4 1E-4 {E-4

(table continued on next page)
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Exper iment l 2 3 4 5
2 IE-3 1E-S 4E-4 SE-4 3E-2
A, B 3 JE-4 4E-6 26-4 3E-4 26-3
4 3F-4 3E-5 4F-4 6E-4 SE-3
f 2E-3 4E-4 3E-2 3E-2 3E-2 4
2 2E-3 TJE-6 26-4 SE-4 2£-3
3 |E-3 7E-6 2E-4 3E-4 1E-3
! v 4 Of-4 SE-6 26-4 2£-4 TE-4
i S BE-4 4E-6 I|E-4 1E-4 GSE-4
| 6 2F-4 2E-6 6E-5 SE-5 2£-4
' 7 9F-5 1{E-6 4E-5 3E-5 2E-3
3 ! E-2 3E-2 2 2 2
| < 2 | 9E-3 3E-4 IE-2 3E-2 26-2
> 3 3E-3 4E-5 2E-3 SE-3 BE-3
Slv, 4 (E-3 B8E-6 3E-4 26-4 OE-4
* S 9E-4 6F-6 2E-4 2£-4 BE-4
6 3E-4 6E-6 8E-5 6E-5 2F-4
: 7 6E-5 2E-6 3E-5 BE-5 {E-4
i 1 4E-2 3E-2 2 2 2
2 {E-3 1E-4 4E-3 7E-3 OF-3
4 3 2E-3 2E-5 OE-4 1E-3 2E-3
| Vy 4 IE-3 S5E-5 SE-4 3E-4 (E-3
5 8E-4 2F-5 3E-4 2E-4 QE-4 ‘
6 3E-4 6E-S 2F-4 1E-4 4E-4 !
! 7 26-4 26-5 I(E-4 26-5 3E-3

Table 6.8. Summary of experiments using biquintics.
Additional input parameters were NLAYER = 4,
ITYPECI) = 1, ITYPEC2) = 1, ITYPE(3) =2, ITYPEC4) = 2.
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6.4.3 Discussion,

It is interesting to compare experiments based on the same assumed

field, e.g. the bicubic-experiments 5 and 9. (The field at r = | is
shown in figures 6.10-6.12. Also table 6.5 applies to this field) It is
seen that the transition from 32 elements in the lowermost layer to 128 b

elements results in an increase of accurocy by one digit. On the other
hand, experiments 8 and 9 differ only with respect to NPOTC. One
recognizes that experiment 8 looses accuracy in the lower layers due to
o rougher field there. However the accuracy in the upper layers is about
the some. This confirms our reasoning that the finite element solution
regulorizes the field without affecting the lower frequencies. A

compar ison of experiments 3 and 4 shows that the representation of the

field in the outer zone by spherical harmonics is about equivaient to

representation by elements extending to infinity. However it must be

borne in mind that the computotional effort is less in the case of
elements extending to infinity.

Experiment No. 5 using bicubics and experiment No. 4 using
biquintics ore otherwise based mostly on equal porameters. A comparison
shows that the improvement coming from biquintics is marginal.

Experiments No. 4 oand No. 5 of the biquintics-table show that
fixing the Laplacean at zero gove worse results. It is particulorly
interesting how poorly the harmonic coefficients were recovered in
experiment 5. In all experiments using biquintics the recoverage of the
harmonic coefficients was inferior to that in the experiments using

bicubics. The reason is not yet completely clarified.
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6.4.4. A word on the Computer programs.

The programs for the Amdah! 479 V/6-II were written in an extended
FORTRAN. They comprised about 6000 statements. Double precision was used
throughout. Coding, testing aond processing required about 6 weeks. No
attempt was made to optimize speed by using assembly code in the inner
loop of the equation solver. The CPU time for the largest experiment was
83 seconds. It required the solution of o linear system with 2368
unknowns. Recherches show that about half of the time was spent on
evaluating the assumed potentic! and its derivatives for comparison
purposes. The time spent on the solution of the linear system must have
been less than 40 seconds. A full system of this size would have
required a CPU of more than 74 minutes. Hence a factor of cbout 1/108
has been gained by the nested dissection method.

The programs for the post-analysis on the WANG 2200 VP-desk-top
computer were written in an extended BASIC, colled WANG BASIC-2. About
S@0k bytes of code were assembled requiring an effort of obout 3 weeks.
Doing the post-analysis on a large computer would have required a time
span of probebly 3 months. Small desk top computers have powerful
editing facilities, they offer instant response during editing, and
instant diagnosis during testing. It is a nonsense to solve small

problems on large computers.

6.4.5. Further desirable experinents.

Time pressure did not allow to conduct all experiments the author had
originally in mind. It was intended to generate "assumed potentials’

other than those defined by circular harmonics. For example it would be

interesting to see how the mathod performs for a potential gemerated by
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buried dipoles. Also potentials with other types of near singularities
could be tried Another test could have been devoted to irregularly

distributed measurement locations, to noisy data, and to less reguiar

element partitions Comparisons with the results of other methods

applied to the same 2-dimensional problem are missing. Finally, tests in
3 dimensions should be performed. Unfortunately there is a limit to the
cnount of work o single person con do in a year, in addition to teaching
and administrating. It is intended to continue the experiments with the

help of my coworkers and students and to give a more complete report at

T

a later occasion.
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7. A proposed hybrid method.

7.1 Revision of the surface layer method.

There 1s an obvious way to introduce finite elements to the surface
layer method, namely to represent the surface layer density in terms of
2-dimensional finite elements. Bilinear functions defined over
rectangles in the ¢,4 piane would ensure a continuous surface layer
density. Bicubics would give a ¢! function No tmprovement in
computational efficiency can be expected from such a procedure. The
normal equations wouid still be fully occupied. The number of parameters
per node increases from one to four. Hence block areas can be chosen 4
times as large os in the case of constant densities within blocks. The
benefit would be o field having continuous derivatives down to the

surface of computation.

7.2 Multipole layer.

Keeping in mind that the potential V to be represented is actually a
disturbing potential, and that frequentiy the reference potential U is
chosen in a way that V is free of harmonics up to o certain degree N-f,
it is .empting to try a surface layer density such that the generated
potential is free of harmonics up to degree N-1 Such densities cre
available, though not in the form of a single {ayer. Layers of

multipoles must be chosen. The pcotential generated by o dipoie is

v o= L0 ¥ (7.1
|

Here 1 denotes the strength of the dipole. The meaning of p and [ is
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seen from figure 7.1 4
point at which
V 1s evaluated

Figure 7.1. Explains the notation of

quantities related to a dipole

It is useful to remember that the potential of o dipole is obtained from
that one of o mass point by toking the directiona! derivative with

respect to the axis of the dipole and at the location of it.

cos y _ 9 | 7.2

It follows that the potential of a dipole decreases |ike 0{%7} as r—o,
Hence it is free of zero and first order harmonics. A dipole layer is
obtained by locating dipoles at a surface and letting the strength of
the dipole be a function of location. The axis may also vary with
location. Physically ond mathematically most mecningful is the
coincidence of the axis with the surfoce normal. The potential of a
dipole layer is also 0{%;}.

Dipoles may be generalized to multipoles. Multipoles were already ]

studied by Gauss and Maxwell. An N+| pole of unit strength is obtained

qQas

9 o 3 | (7.3

8v1 sz BvN !

Confer e.g. Lense (1954), p. 88 ff. Trying most simple things first, one

puts v =v,= .. =y\=v, thus letting the N axes coincide ond obtaining
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§11. | (7.9
av |
The generated potential is 0{;%:7}, i.e. it is free of spherical
harmonics up to and including degree N-1. The same holds for the

potential of o multipole layer. The axes may be chosen in coincidence
with the surfoce normal.

What is the advontage of toking o multipole layer instead of a
single layer? At a first glance it appears that multipole loyer also
generates a full normal equation matrix. Mind, however, that the kernel
of a multipole of order N+{ decreases as 0{;%77} as r—_ This implies
that even for moderately large N the contribution of the multipoles
located at o small surface element decreases ropidiy as one moves away
from that surface element. If the surface on which the multipole layer
is assumed is subdivided into finite elements, ond if the strength
function is represented in terms of nodal parameters, then the nodal
porameters of elements at a larger distance will be coupled only by very
small coefficients which moy be reploced by zeroes. Hence a sparse
system of normal equations will be obtaoined.

What ore the difficulties to be expected in implementing the

multipole layer method, and what is an appropriote finite element

representation of the strength function? How smooth should it be chosen?
In order to give a (preliminory) answer to these questions we shall toke

a closer look at spherical multipole layers in the next subsection.

“7.3. Multipole layers on the sphere.

Assume a sphere of radius R = | and let r > R = |. Starting from the

well known representation for the function

[

Dovith lz\/R2+rze~2chos1p
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namely,
Pn(cos ) {E‘} ; r >R (7.6

differentiating N times with respect to R and putting ofterwards R = {,

one gets

n+|
.

a.nD

P (cos p) nln=1)...(n-N+1)
n

Here P (t) are the familior Legendre polynomials, normalized in a way
that P (1) = 1. The series (7.7) converges for r > 1. Letting r—1, we
obtain in the |jmit o sequence which converges distributionally. The

potential generated by the multipole layer with strength function p is

vep = [ & ! () drCy
v =) oW TGERD | g, FO1 €N o

r>R=1

Here £, M are unit vectors, ' is the surface of the unit sphere. We
temporarily fix r oand view V(r¥) as a function of ¥ only. Then (7.8
represents an isotropic operator. According to the theory outlined in
Meissl (1971), chapter 3, we know that its eigenfunctions are the
spherical harmonics H_ . We can calculate the eigenvalues by the

Funk-Hecke formula obtaining

(

= 0 ; n <N

2 = 4"1 ;nz2N=10 (7.9

. NCE P R G YD ‘ ;n=N>0

= +
2n+| N |
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Hence if u(¥) is represented as

iﬂ Ho () (7.10

¢
@ m=-n nm nm

W8

u(g) =

where we now Lake the surface-spherical harmonics H (1) as fully

normalized, i.e.

! 2 _
;;—j} HE () dr(m = 7.1

we get the representation for V(r¥) as

+n Hnm(g)
oo I Fan T

(7.12)

P18

VErE) =

n

We see that V(rf) = 0{;%77}, as announced ear |ier. Further we note that
the operator is singular. The ccefficients g . for n < N do not
contribute to V(r¥).

If we like to continue V(rf) downuard to r = R = |, we must impose
restrictions upon the .. The following series must converge

+n 2

) (o= (7.13

to ensure that V(F) is o member of H., the Hilbert space of squar ed
integrable functions defined on . The operator transforming p(¥) into

V(§) has eigenvalues

A= Z:fl nCn=1) ... (n-N+1) (7.14)

It omplifies the high frequences more than the lower ones. It moy be

viewed as an operator from the Hilbert space HSR'N") into HK?; k0.
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The space HEL) comprises those functions
® +n
= (7.15
Q= 11 e H,@

for which the following series converges.

. tn l 2
r ¥ (nhec ) (K = (7.16)
n=0 m=-n nm
In o least squares approach we |ike to have at r = | o potential

V(g e H£2). Hence p(¥) e HgN*|> appears appropriate. Therefore the
trial functions should be CN across element boundaries. In a Ritz-type
approach V(¥) e RS, () e HSN) and CV! continuity across element

boundaries would be sufficient.

Remark: One could avoid the smoothness requirements on u(¥) by the
Bjerhammor~sphere approach. A sphere of radius !-¢ is placed
concentrically into the unit sphere. The density p is assumed on this

sphere. We thus consider aon operalor

p((t-€28) — V() (7.1

whose eigenvalues are

b = 3 alne) L e D)

n n+

(7.18

n 2N

However, in the present context we do not propose to shove difficulties
under the carpet by burying the multipole layer underneath the surface
of computation.

Suppose now, for the moment, that in (7.8) V(r¥) is specified and

that p(n) is sought. If the equations ore discretized in some way, we
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expect them to be very ill conditioned due to the differences in size of.
the eigenvalues A,. While the high frequent components of u(7n) appear to
be well determined, the low frequent components are not.

In physical geodesy we do not start from o known V(}). Instead we
hove a discrete set of measurements corresponding to functionals of
V(E). The situation is more difficult but nevertheless similar. The
linear system leading to u(¥) will be ill conditioned.

One may adopt the viewpoint that ill conditioning is equivalent to
an inproper problem formulation, and one may simply abandon the outlined
approach. On the other hand, if insight teaches one that the effects of
the ill-conditioning on the final result will be negligible, one may find
a way around the numerical difficulties. Of course, there is no hope
thet insight con be reploced by calculus.

At the present time, no definite answer con be given. More time
is needed to think about the method and to conduct numerical

exper iments.
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Appendix A.

Computational effort associated with the partial reduction of a profiled

system of norma! equalions.

The material of this section is rather unsophisticated in nature.
However even.triviol considerotions may be cumbersome if their
verification is left to the reader. Therefore we quickly state some
formulas on the number of operations needed to solve a structured large
system of positive definite equations. A more systematic introduction to
this problem area is found in Meiss! (1980 ), chopter 6.

We introduce the well known concept of the profile of o symmetric
matrix A = (o). It comprises all elements a, such that (1) i< j, and
(2) there exists an element a,j # 0, k<i. Referring to figure A.1 we
introduce the profile function p(x) indicated by a heavy solid line. The
heavy line should actually be o step function because we have a discrete
number of equations. However we smear out the discontinuities. This is

legitimote if we deal with o lorge system.

A

Figure A.1. Partial reduction of a profiled symmetric
matrix. Definition of p(x), d(x).
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The portion below the main diagonal is not shown in figure A.1. Due to
symmelry, there is no need to store these coefficients in the computer.

The upper portion of the system comprises i equations. They are
called "interior”. The equations below labeled j are called "junction
equations®. During partial reduction, the interior equations are
eliminated. One obtains a system of j partially reduced junction
equctions.

If the matrix is split as

A A An A D
An An '

then the matrix of the partially reduced set is given by

AP s Ay - ALAL Ay CA.2)
A direct elimination procedure is used such as Gauss, Cholesky or one of
the variants. The portial triangulor decomposition phase is by far most
time consuming. During this phase zero coefficients are enforced below
the main diagonal positions of the interior equations. Focus attention
on a row of coefficients whose diagonal position is implied by column x.
Call this the row x. Let y be a column to the right of x. From the
coefficient in row x ond column y as many multiples of coefficients

located above it are subtracted as the following expression indicates:
[(xy) = Min{ Max (p(x)- o(x), 0), Max (ply)-d(x) @)} (A.3

Thereby d(x) is the function implied by the heavy broken line in figure

A.1. Hence partial triangulor decomposition requires

r =/£r;x];;(X.y)dy (A.4)
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steps. One step comprises one multiplication ond one addition. There

are also divisions and square roots (in case of Cholesky), but their

number is negligible. Also the number of operational steps involving

the right hand side, as well as the number of steps arising during the
later back-substitution phase are negligible.

Take a fully occupied system. We find

itj i

‘ i (2 oie))
| r'./d./xd] +/cL>(/i.d._y =-é—+—1—,z—— (A.5)
| 0 ¢ x

x

This formula is frequently used in chapter 4. For j = 0,
reduction, we obtain

i.e. full

)

s = (A.6)
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